Normalized defining polynomial
\( x^{20} - 4 x^{19} - 5 x^{18} + 38 x^{17} + 249 x^{16} - 972 x^{15} + 2228 x^{14} - 4148 x^{13} + 30574 x^{12} - 65800 x^{11} + 404716 x^{10} - 802500 x^{9} + 3759952 x^{8} - 5804132 x^{7} + 27779377 x^{6} - 31392896 x^{5} + 143264265 x^{4} - 101338586 x^{3} + 425478541 x^{2} - 136713220 x + 523826161 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3652826763616533724927636470896103515625=3^{10}\cdot 5^{10}\cdot 11^{16}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $95.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2145=3\cdot 5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2145}(1,·)$, $\chi_{2145}(961,·)$, $\chi_{2145}(1156,·)$, $\chi_{2145}(389,·)$, $\chi_{2145}(1351,·)$, $\chi_{2145}(584,·)$, $\chi_{2145}(586,·)$, $\chi_{2145}(779,·)$, $\chi_{2145}(1741,·)$, $\chi_{2145}(14,·)$, $\chi_{2145}(1169,·)$, $\chi_{2145}(1171,·)$, $\chi_{2145}(599,·)$, $\chi_{2145}(196,·)$, $\chi_{2145}(1754,·)$, $\chi_{2145}(1951,·)$, $\chi_{2145}(1379,·)$, $\chi_{2145}(1574,·)$, $\chi_{2145}(1769,·)$, $\chi_{2145}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{46} a^{14} + \frac{3}{23} a^{13} + \frac{1}{23} a^{12} + \frac{1}{23} a^{11} + \frac{1}{46} a^{10} - \frac{1}{46} a^{9} - \frac{11}{23} a^{8} - \frac{1}{46} a^{7} - \frac{11}{23} a^{6} + \frac{11}{23} a^{5} + \frac{1}{46} a^{4} + \frac{7}{46} a^{2} + \frac{1}{46} a - \frac{10}{23}$, $\frac{1}{322} a^{15} - \frac{3}{322} a^{14} + \frac{17}{322} a^{13} - \frac{8}{161} a^{12} + \frac{3}{161} a^{11} - \frac{4}{23} a^{10} - \frac{18}{161} a^{9} + \frac{15}{46} a^{8} + \frac{79}{322} a^{7} + \frac{151}{322} a^{6} + \frac{33}{322} a^{5} + \frac{53}{161} a^{4} + \frac{61}{161} a^{3} - \frac{8}{161} a^{2} + \frac{66}{161} a - \frac{48}{161}$, $\frac{1}{322} a^{16} + \frac{1}{322} a^{14} - \frac{1}{46} a^{13} - \frac{4}{23} a^{12} - \frac{26}{161} a^{11} - \frac{25}{161} a^{10} - \frac{157}{322} a^{9} + \frac{65}{322} a^{8} + \frac{73}{322} a^{7} - \frac{2}{161} a^{6} + \frac{51}{322} a^{5} + \frac{111}{322} a^{4} - \frac{19}{46} a^{3} - \frac{9}{23} a^{2} + \frac{66}{161} a + \frac{13}{322}$, $\frac{1}{322} a^{17} + \frac{3}{322} a^{14} - \frac{31}{322} a^{13} - \frac{11}{161} a^{12} - \frac{3}{23} a^{11} + \frac{67}{322} a^{10} - \frac{67}{322} a^{9} - \frac{25}{322} a^{8} - \frac{45}{161} a^{7} + \frac{34}{161} a^{6} - \frac{45}{161} a^{5} + \frac{45}{161} a^{4} - \frac{87}{322} a^{3} + \frac{18}{161} a^{2} + \frac{7}{46} a + \frac{117}{322}$, $\frac{1}{42131317473964695914} a^{18} - \frac{3452283937640}{56476296881990209} a^{17} - \frac{24331564370351705}{21065658736982347957} a^{16} + \frac{41011986675814897}{42131317473964695914} a^{15} - \frac{163737887989423763}{21065658736982347957} a^{14} - \frac{9351718676947602401}{42131317473964695914} a^{13} - \frac{498835021954384140}{3009379819568906851} a^{12} - \frac{1845895256200833599}{42131317473964695914} a^{11} - \frac{7884474907874986175}{42131317473964695914} a^{10} + \frac{521258516020858391}{21065658736982347957} a^{9} + \frac{529661153634137758}{3009379819568906851} a^{8} - \frac{18218302865763841131}{42131317473964695914} a^{7} + \frac{5711472021902830397}{42131317473964695914} a^{6} - \frac{2457120594784070666}{21065658736982347957} a^{5} - \frac{9062690857033817111}{21065658736982347957} a^{4} - \frac{1119122188877435573}{21065658736982347957} a^{3} + \frac{16881027888127586387}{42131317473964695914} a^{2} + \frac{2748093179130761880}{21065658736982347957} a + \frac{368938792695123657}{21065658736982347957}$, $\frac{1}{13016534188375461751768288088295003284153287394} a^{19} + \frac{14709853155866189040973504}{6508267094187730875884144044147501642076643697} a^{18} + \frac{4879787399310793755122668301035026041270259}{6508267094187730875884144044147501642076643697} a^{17} + \frac{14952008984964030617233973237917525389443659}{13016534188375461751768288088295003284153287394} a^{16} - \frac{2443580318669647003455036061684571992800715}{6508267094187730875884144044147501642076643697} a^{15} - \frac{34554509288291244859217963792469770731885703}{6508267094187730875884144044147501642076643697} a^{14} + \frac{1449161096295699026869471368435898998128685497}{13016534188375461751768288088295003284153287394} a^{13} + \frac{1203962127765520853228946103978964732813753707}{13016534188375461751768288088295003284153287394} a^{12} + \frac{2332045225729313930697689983553324393172273983}{13016534188375461751768288088295003284153287394} a^{11} - \frac{417757885188495128339655616380474988568239544}{6508267094187730875884144044147501642076643697} a^{10} + \frac{5236048604346585580553915241822733580633780725}{13016534188375461751768288088295003284153287394} a^{9} - \frac{2536717848936244102738717449634548154233604091}{13016534188375461751768288088295003284153287394} a^{8} + \frac{841103784055442673330064062205173413685830}{282968134529901342429745393223804419220723639} a^{7} - \frac{3288939274922731225421875525998330962033838639}{13016534188375461751768288088295003284153287394} a^{6} + \frac{1791228175881599418090850857393999556257122726}{6508267094187730875884144044147501642076643697} a^{5} + \frac{1048079272415265694606860146071117302295933271}{13016534188375461751768288088295003284153287394} a^{4} + \frac{1999001360174232765548206360012737799656455513}{13016534188375461751768288088295003284153287394} a^{3} - \frac{35747178915985600444015965094433830851259179}{282968134529901342429745393223804419220723639} a^{2} - \frac{95171986539585272735535625345815208094198683}{565936269059802684859490786447608838441447278} a + \frac{453192741569241597155023760594377076961381965}{6508267094187730875884144044147501642076643697}$
Class group and class number
$C_{2}\times C_{90310}$, which has order $180620$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2015201.7242 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{13}, \sqrt{-15})\), \(\Q(\zeta_{11})^+\), 10.0.60438619802379121875.1, 10.10.79589952003133.1, 10.0.162778775259375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 13 | Data not computed | ||||||