Properties

Label 20.0.36252013791...8125.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{15}\cdot 1039^{2}\cdot 1049^{2}$
Root discriminant $13.43$
Ramified primes $5, 1039, 1049$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T654

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -4, 5, 6, -23, 20, 16, -46, 27, 27, -47, 2, 50, -51, 12, 22, -25, 8, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 + 4*x^18 + 8*x^17 - 25*x^16 + 22*x^15 + 12*x^14 - 51*x^13 + 50*x^12 + 2*x^11 - 47*x^10 + 27*x^9 + 27*x^8 - 46*x^7 + 16*x^6 + 20*x^5 - 23*x^4 + 6*x^3 + 5*x^2 - 4*x + 1)
 
gp: K = bnfinit(x^20 - 4*x^19 + 4*x^18 + 8*x^17 - 25*x^16 + 22*x^15 + 12*x^14 - 51*x^13 + 50*x^12 + 2*x^11 - 47*x^10 + 27*x^9 + 27*x^8 - 46*x^7 + 16*x^6 + 20*x^5 - 23*x^4 + 6*x^3 + 5*x^2 - 4*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} + 4 x^{18} + 8 x^{17} - 25 x^{16} + 22 x^{15} + 12 x^{14} - 51 x^{13} + 50 x^{12} + 2 x^{11} - 47 x^{10} + 27 x^{9} + 27 x^{8} - 46 x^{7} + 16 x^{6} + 20 x^{5} - 23 x^{4} + 6 x^{3} + 5 x^{2} - 4 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(36252013791534423828125=5^{15}\cdot 1039^{2}\cdot 1049^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 1039, 1049$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{11768599} a^{19} + \frac{1136101}{11768599} a^{18} - \frac{2837315}{11768599} a^{17} + \frac{2119627}{11768599} a^{16} + \frac{4568232}{11768599} a^{15} + \frac{3751585}{11768599} a^{14} - \frac{3717596}{11768599} a^{13} - \frac{5751516}{11768599} a^{12} + \frac{212036}{11768599} a^{11} + \frac{90411}{287039} a^{10} + \frac{2340356}{11768599} a^{9} - \frac{1187262}{11768599} a^{8} + \frac{3679902}{11768599} a^{7} - \frac{4427289}{11768599} a^{6} - \frac{1262526}{11768599} a^{5} - \frac{5255090}{11768599} a^{4} + \frac{5702816}{11768599} a^{3} - \frac{4341581}{11768599} a^{2} - \frac{1363323}{11768599} a - \frac{993930}{11768599}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{27541871}{11768599} a^{19} - \frac{109753620}{11768599} a^{18} + \frac{98867302}{11768599} a^{17} + \frac{252145226}{11768599} a^{16} - \frac{694376106}{11768599} a^{15} + \frac{501342869}{11768599} a^{14} + \frac{498202609}{11768599} a^{13} - \frac{1439533298}{11768599} a^{12} + \frac{1160211882}{11768599} a^{11} + \frac{9560914}{287039} a^{10} - \frac{1422768704}{11768599} a^{9} + \frac{494582025}{11768599} a^{8} + \frac{1023621973}{11768599} a^{7} - \frac{1179981135}{11768599} a^{6} + \frac{139404372}{11768599} a^{5} + \frac{715564343}{11768599} a^{4} - \frac{559481004}{11768599} a^{3} - \frac{1797586}{11768599} a^{2} + \frac{178631488}{11768599} a - \frac{71461303}{11768599} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3694.42225582 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T654:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 57600
The 70 conjugacy class representatives for t20n654 are not computed
Character table for t20n654 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.4.3405971875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ $20$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ $20$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.12.9.2$x^{12} - 10 x^{8} + 25 x^{4} - 500$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$
1039Data not computed
1049Data not computed