Normalized defining polynomial
\( x^{20} - 10 x^{19} + 51 x^{18} - 174 x^{17} + 495 x^{16} - 1308 x^{15} + 3000 x^{14} - 5454 x^{13} + 7990 x^{12} - 10474 x^{11} + 11952 x^{10} - 8880 x^{9} + 843 x^{8} + 5784 x^{7} - 4499 x^{6} - 2106 x^{5} + 25895 x^{4} - 44530 x^{3} - 17248 x^{2} + 38672 x + 79760 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(36063779114647973956917740340219904=2^{12}\cdot 11^{10}\cdot 113^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{471546267222790093768} a^{18} - \frac{9}{471546267222790093768} a^{17} - \frac{14474656176905058227}{117886566805697523442} a^{16} - \frac{2089317390457057575}{117886566805697523442} a^{15} - \frac{71701461756095556909}{471546267222790093768} a^{14} - \frac{8450993029931744679}{67363752460398584824} a^{13} - \frac{15197230159776156643}{471546267222790093768} a^{12} - \frac{227351419214923911003}{471546267222790093768} a^{11} - \frac{59342374188717467419}{471546267222790093768} a^{10} + \frac{80582097146814179061}{471546267222790093768} a^{9} - \frac{18495095868783501745}{471546267222790093768} a^{8} + \frac{172748839582957849761}{471546267222790093768} a^{7} + \frac{88196223477975663369}{235773133611395046884} a^{6} - \frac{51054290775384420603}{117886566805697523442} a^{5} - \frac{11992778955161638917}{67363752460398584824} a^{4} + \frac{89005488971120225947}{471546267222790093768} a^{3} + \frac{44861158862298419859}{117886566805697523442} a^{2} + \frac{13436691793612395447}{58943283402848761721} a + \frac{22852815910062342556}{58943283402848761721}$, $\frac{1}{145452690041274609533583512} a^{19} + \frac{38555}{36363172510318652383395878} a^{18} - \frac{10631775812563344470761181}{145452690041274609533583512} a^{17} + \frac{4357036723403604255797791}{72726345020637304766791756} a^{16} - \frac{21221029971086688095022085}{145452690041274609533583512} a^{15} + \frac{1868130115991484011620043}{72726345020637304766791756} a^{14} + \frac{16681297944215764910221093}{36363172510318652383395878} a^{13} + \frac{7466652102455862324362665}{18181586255159326191697939} a^{12} + \frac{22510763118355350586339913}{72726345020637304766791756} a^{11} + \frac{3267949135975663442220765}{18181586255159326191697939} a^{10} + \frac{3490032353637210122443887}{18181586255159326191697939} a^{9} - \frac{18970798830661656338930735}{72726345020637304766791756} a^{8} - \frac{6112723660761704429944643}{20778955720182087076226216} a^{7} - \frac{15714028244760292518120293}{36363172510318652383395878} a^{6} + \frac{31746077923679197653690089}{145452690041274609533583512} a^{5} - \frac{13179508714169434759492723}{36363172510318652383395878} a^{4} - \frac{9445208196419392560123807}{20778955720182087076226216} a^{3} - \frac{35472286565923765301726039}{72726345020637304766791756} a^{2} + \frac{3224655072270846077772749}{36363172510318652383395878} a + \frac{8685817669596651152645247}{18181586255159326191697939}$
Class group and class number
$C_{3}\times C_{144}$, which has order $432$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6459109.84372 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.0.189904657959324352.1, 10.0.47476164489831088.1, 10.10.152779290393664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.12.10.1 | $x^{12} + 3146 x^{6} + 14235529$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.12.10.1 | $x^{12} + 130967 x^{6} + 12769000000$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |