Normalized defining polynomial
\( x^{20} - x^{19} + 9 x^{18} - 2 x^{17} - x^{16} - 6 x^{15} + 56 x^{14} + 164 x^{13} - 104 x^{12} - 47 x^{11} + 697 x^{10} + 362 x^{9} - 875 x^{8} - 616 x^{7} + 136 x^{6} + 1180 x^{5} + 1411 x^{4} + 721 x^{3} + 1737 x^{2} + 1486 x + 1103 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35796303426870968668217777609=11^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4545297625843460418864065705334963256537} a^{19} - \frac{1237406550083830108675531941816543702896}{4545297625843460418864065705334963256537} a^{18} + \frac{2063754047038686235518751854485696621920}{4545297625843460418864065705334963256537} a^{17} - \frac{1156987757922671741733671105757148670823}{4545297625843460418864065705334963256537} a^{16} - \frac{2011732729093566936609554736515429008727}{4545297625843460418864065705334963256537} a^{15} - \frac{1727043986650376568260240682944250188430}{4545297625843460418864065705334963256537} a^{14} + \frac{910181032579110211110147401290003507721}{4545297625843460418864065705334963256537} a^{13} + \frac{1947347504823520828150080671096070181108}{4545297625843460418864065705334963256537} a^{12} - \frac{1962546598329582572963075455917828755530}{4545297625843460418864065705334963256537} a^{11} - \frac{1841205155404534607461637916176975609548}{4545297625843460418864065705334963256537} a^{10} + \frac{2022723917846254517768252478301422398025}{4545297625843460418864065705334963256537} a^{9} - \frac{1057333461883384975212453083790297913028}{4545297625843460418864065705334963256537} a^{8} + \frac{1144796352156649274942031449842331313709}{4545297625843460418864065705334963256537} a^{7} + \frac{2139054587493032306842903111944734072163}{4545297625843460418864065705334963256537} a^{6} + \frac{429571217061833693291975984520913511659}{4545297625843460418864065705334963256537} a^{5} - \frac{1103739786966620870525441330313971699543}{4545297625843460418864065705334963256537} a^{4} + \frac{111679817243869293228231368537717172589}{4545297625843460418864065705334963256537} a^{3} + \frac{1939386515547870343984094924999223807952}{4545297625843460418864065705334963256537} a^{2} - \frac{1894125309582044280689775736327583248252}{4545297625843460418864065705334963256537} a - \frac{27374826053911520476337268792002866970}{4545297625843460418864065705334963256537}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 635235.6127553139 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 4.0.75449.1, 10.0.36252565459.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 11.10.9.4 | $x^{10} - 99$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 19 | Data not computed | ||||||