Normalized defining polynomial
\( x^{20} + 370 x^{18} + 55620 x^{16} + 4488850 x^{14} + 214685475 x^{12} + 6306436255 x^{10} + \cdots + 5857959624005 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[0, 10]$ |
| |
| Discriminant: |
\(3575414809573364257812500000000000000000000\)
\(\medspace = 2^{20}\cdot 5^{35}\cdot 601^{2}\cdot 1801^{2}\)
|
| |
| Root discriminant: | \(134.17\) |
| |
| Galois root discriminant: | $2^{15/8}5^{7/4}601^{1/2}1801^{1/2}\approx 63800.31777789046$ | ||
| Ramified primes: |
\(2\), \(5\), \(601\), \(1801\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | unavailable$^{512}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{1043}a^{16}-\frac{20}{149}a^{14}+\frac{79}{1043}a^{12}+\frac{228}{1043}a^{10}+\frac{212}{1043}a^{8}+\frac{389}{1043}a^{6}-\frac{76}{1043}a^{4}-\frac{348}{1043}a^{2}+\frac{324}{1043}$, $\frac{1}{1043}a^{17}-\frac{20}{149}a^{15}+\frac{79}{1043}a^{13}+\frac{228}{1043}a^{11}+\frac{212}{1043}a^{9}+\frac{389}{1043}a^{7}-\frac{76}{1043}a^{5}-\frac{348}{1043}a^{3}+\frac{324}{1043}a$, $\frac{1}{13\cdots 93}a^{18}-\frac{60\cdots 56}{13\cdots 93}a^{16}-\frac{67\cdots 12}{13\cdots 93}a^{14}-\frac{61\cdots 18}{19\cdots 99}a^{12}+\frac{52\cdots 47}{13\cdots 93}a^{10}+\frac{10\cdots 30}{19\cdots 99}a^{8}-\frac{37\cdots 02}{19\cdots 99}a^{6}-\frac{70\cdots 77}{19\cdots 99}a^{4}-\frac{25\cdots 66}{13\cdots 93}a^{2}-\frac{55\cdots 50}{12\cdots 93}$, $\frac{1}{13\cdots 93}a^{19}-\frac{60\cdots 56}{13\cdots 93}a^{17}-\frac{67\cdots 12}{13\cdots 93}a^{15}-\frac{61\cdots 18}{19\cdots 99}a^{13}+\frac{52\cdots 47}{13\cdots 93}a^{11}+\frac{10\cdots 30}{19\cdots 99}a^{9}-\frac{37\cdots 02}{19\cdots 99}a^{7}-\frac{70\cdots 77}{19\cdots 99}a^{5}-\frac{25\cdots 66}{13\cdots 93}a^{3}-\frac{55\cdots 50}{12\cdots 93}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}\times C_{2}\times C_{160}\times C_{32320}$, which has order $41369600$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}\times C_{2}\times C_{160}\times C_{32320}$, which has order $41369600$ (assuming GRH) |
| |
| Relative class number: | $41369600$ (assuming GRH) |
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{37\cdots 50}{17\cdots 57}a^{18}+\frac{13\cdots 30}{17\cdots 57}a^{16}+\frac{19\cdots 70}{17\cdots 57}a^{14}+\frac{20\cdots 60}{24\cdots 51}a^{12}+\frac{61\cdots 07}{17\cdots 57}a^{10}+\frac{22\cdots 10}{24\cdots 51}a^{8}+\frac{32\cdots 85}{24\cdots 51}a^{6}+\frac{24\cdots 00}{24\cdots 51}a^{4}+\frac{54\cdots 25}{17\cdots 57}a^{2}+\frac{17\cdots 14}{15\cdots 57}$, $\frac{93\cdots 52}{19\cdots 99}a^{18}+\frac{23\cdots 76}{13\cdots 93}a^{16}+\frac{48\cdots 48}{19\cdots 99}a^{14}+\frac{26\cdots 24}{13\cdots 93}a^{12}+\frac{11\cdots 40}{13\cdots 93}a^{10}+\frac{30\cdots 16}{13\cdots 93}a^{8}+\frac{47\cdots 68}{13\cdots 93}a^{6}+\frac{38\cdots 07}{13\cdots 93}a^{4}+\frac{12\cdots 88}{13\cdots 93}a^{2}+\frac{17\cdots 34}{12\cdots 93}$, $\frac{15\cdots 92}{13\cdots 93}a^{18}+\frac{80\cdots 99}{19\cdots 99}a^{16}+\frac{81\cdots 04}{13\cdots 93}a^{14}+\frac{63\cdots 80}{13\cdots 93}a^{12}+\frac{28\cdots 64}{13\cdots 93}a^{10}+\frac{74\cdots 84}{13\cdots 93}a^{8}+\frac{11\cdots 28}{13\cdots 93}a^{6}+\frac{88\cdots 08}{13\cdots 93}a^{4}+\frac{28\cdots 12}{13\cdots 93}a^{2}+\frac{11\cdots 38}{17\cdots 99}$, $\frac{34\cdots 86}{13\cdots 93}a^{18}+\frac{12\cdots 56}{13\cdots 93}a^{16}+\frac{17\cdots 89}{13\cdots 93}a^{14}+\frac{12\cdots 48}{13\cdots 93}a^{12}+\frac{54\cdots 23}{13\cdots 93}a^{10}+\frac{13\cdots 06}{13\cdots 93}a^{8}+\frac{18\cdots 86}{13\cdots 93}a^{6}+\frac{13\cdots 22}{13\cdots 93}a^{4}+\frac{40\cdots 23}{13\cdots 93}a^{2}+\frac{12\cdots 44}{12\cdots 93}$, $\frac{36\cdots 26}{13\cdots 93}a^{18}+\frac{18\cdots 49}{19\cdots 99}a^{16}+\frac{18\cdots 91}{13\cdots 93}a^{14}+\frac{13\cdots 50}{13\cdots 93}a^{12}+\frac{57\cdots 65}{13\cdots 93}a^{10}+\frac{14\cdots 14}{13\cdots 93}a^{8}+\frac{20\cdots 61}{13\cdots 93}a^{6}+\frac{14\cdots 33}{13\cdots 93}a^{4}+\frac{42\cdots 82}{13\cdots 93}a^{2}+\frac{14\cdots 98}{17\cdots 99}$, $\frac{20\cdots 60}{19\cdots 99}a^{18}+\frac{49\cdots 28}{13\cdots 93}a^{16}+\frac{94\cdots 60}{19\cdots 99}a^{14}+\frac{46\cdots 00}{13\cdots 93}a^{12}+\frac{18\cdots 86}{13\cdots 93}a^{10}+\frac{47\cdots 78}{13\cdots 93}a^{8}+\frac{72\cdots 52}{13\cdots 93}a^{6}+\frac{64\cdots 10}{13\cdots 93}a^{4}+\frac{23\cdots 47}{13\cdots 93}a^{2}-\frac{16\cdots 46}{12\cdots 93}$, $\frac{48\cdots 52}{13\cdots 93}a^{18}+\frac{17\cdots 52}{13\cdots 93}a^{16}+\frac{26\cdots 56}{13\cdots 93}a^{14}+\frac{21\cdots 60}{13\cdots 93}a^{12}+\frac{10\cdots 56}{13\cdots 93}a^{10}+\frac{27\cdots 45}{13\cdots 93}a^{8}+\frac{45\cdots 32}{13\cdots 93}a^{6}+\frac{38\cdots 20}{13\cdots 93}a^{4}+\frac{19\cdots 64}{19\cdots 99}a^{2}+\frac{56\cdots 86}{12\cdots 93}$, $\frac{85\cdots 80}{19\cdots 99}a^{18}+\frac{21\cdots 61}{13\cdots 93}a^{16}+\frac{43\cdots 01}{19\cdots 99}a^{14}+\frac{22\cdots 32}{13\cdots 93}a^{12}+\frac{96\cdots 98}{13\cdots 93}a^{10}+\frac{24\cdots 13}{13\cdots 93}a^{8}+\frac{34\cdots 13}{13\cdots 93}a^{6}+\frac{26\cdots 41}{13\cdots 93}a^{4}+\frac{81\cdots 72}{13\cdots 93}a^{2}+\frac{26\cdots 84}{12\cdots 93}$, $\frac{14\cdots 40}{13\cdots 93}a^{18}-\frac{92\cdots 20}{13\cdots 93}a^{16}-\frac{13\cdots 16}{13\cdots 93}a^{14}-\frac{20\cdots 67}{13\cdots 93}a^{12}-\frac{14\cdots 72}{13\cdots 93}a^{10}-\frac{36\cdots 14}{89\cdots 57}a^{8}-\frac{10\cdots 36}{13\cdots 93}a^{6}-\frac{89\cdots 15}{13\cdots 93}a^{4}-\frac{25\cdots 92}{13\cdots 93}a^{2}-\frac{61\cdots 14}{12\cdots 93}$
|
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{10}\cdot 161406.837641 \cdot 41369600}{2\cdot\sqrt{3575414809573364257812500000000000000000000}}\cr\approx \mathstrut & 0.169320179816 \end{aligned}\] (assuming GRH)
Galois group
$C_2^4:C_{20}$ (as 20T75):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^4:C_{20}$ |
| Character table for $C_2^4:C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/padicField/7.4.0.1}{4} }^{5}$ | ${\href{/padicField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/padicField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/padicField/29.10.0.1}{10} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/padicField/41.5.0.1}{5} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/padicField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.10.2.20a85.2 | $x^{20} + 2 x^{19} + 2 x^{18} + 2 x^{16} + 4 x^{15} + 6 x^{14} + 4 x^{13} + 7 x^{12} + 8 x^{11} + 9 x^{10} + 8 x^{9} + 8 x^{8} + 8 x^{7} + 7 x^{6} + 8 x^{5} + 7 x^{4} + 6 x^{3} + 5 x^{2} + 6 x + 3$ | $2$ | $10$ | $20$ | 20T75 | not computed |
|
\(5\)
| 5.1.20.35a1.1 | $x^{20} + 20 x^{16} + 5$ | $20$ | $1$ | $35$ | not computed | not computed |
|
\(601\)
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{601}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
|
\(1801\)
| $\Q_{1801}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1801}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1801}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{1801}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |