Normalized defining polynomial
\( x^{20} - 10 x^{19} + 73 x^{18} - 372 x^{17} + 1771 x^{16} - 7028 x^{15} + 26676 x^{14} - 86794 x^{13} + 276168 x^{12} - 764038 x^{11} + 2094610 x^{10} - 4931916 x^{9} + 11762064 x^{8} - 23401988 x^{7} + 48560433 x^{6} - 78655554 x^{5} + 141674005 x^{4} - 172598574 x^{3} + 266043355 x^{2} - 189992882 x + 260403529 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35744090881435427178177640826961657856=2^{20}\cdot 11^{18}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(836=2^{2}\cdot 11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{836}(799,·)$, $\chi_{836}(1,·)$, $\chi_{836}(835,·)$, $\chi_{836}(571,·)$, $\chi_{836}(265,·)$, $\chi_{836}(151,·)$, $\chi_{836}(685,·)$, $\chi_{836}(723,·)$, $\chi_{836}(533,·)$, $\chi_{836}(343,·)$, $\chi_{836}(797,·)$, $\chi_{836}(229,·)$, $\chi_{836}(609,·)$, $\chi_{836}(227,·)$, $\chi_{836}(37,·)$, $\chi_{836}(39,·)$, $\chi_{836}(493,·)$, $\chi_{836}(303,·)$, $\chi_{836}(113,·)$, $\chi_{836}(607,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{67} a^{16} - \frac{8}{67} a^{15} - \frac{20}{67} a^{14} + \frac{12}{67} a^{13} - \frac{33}{67} a^{12} + \frac{13}{67} a^{11} - \frac{3}{67} a^{10} - \frac{15}{67} a^{9} + \frac{4}{67} a^{8} - \frac{8}{67} a^{7} - \frac{29}{67} a^{6} + \frac{6}{67} a^{5} - \frac{10}{67} a^{4} + \frac{4}{67} a^{3} - \frac{25}{67} a^{2} - \frac{23}{67} a - \frac{6}{67}$, $\frac{1}{67} a^{17} - \frac{17}{67} a^{15} - \frac{14}{67} a^{14} - \frac{4}{67} a^{13} + \frac{17}{67} a^{12} - \frac{33}{67} a^{11} + \frac{28}{67} a^{10} + \frac{18}{67} a^{9} + \frac{24}{67} a^{8} - \frac{26}{67} a^{7} - \frac{25}{67} a^{6} - \frac{29}{67} a^{5} - \frac{9}{67} a^{4} + \frac{7}{67} a^{3} - \frac{22}{67} a^{2} + \frac{11}{67} a + \frac{19}{67}$, $\frac{1}{25595305666416690405982243} a^{18} - \frac{9}{25595305666416690405982243} a^{17} - \frac{85011622883943320487541}{25595305666416690405982243} a^{16} + \frac{680092983071546563900532}{25595305666416690405982243} a^{15} + \frac{12255663122613488166280888}{25595305666416690405982243} a^{14} + \frac{4689953603620279591702732}{25595305666416690405982243} a^{13} - \frac{10801934589694354473024939}{25595305666416690405982243} a^{12} + \frac{9191135754441170397508733}{25595305666416690405982243} a^{11} + \frac{4999631025153294149850470}{25595305666416690405982243} a^{10} - \frac{5997386416372545172038291}{25595305666416690405982243} a^{9} + \frac{11740042168549859530332422}{25595305666416690405982243} a^{8} + \frac{4167288996594936998346920}{25595305666416690405982243} a^{7} - \frac{4626307181090892921425601}{25595305666416690405982243} a^{6} + \frac{11622850153206071833103849}{25595305666416690405982243} a^{5} + \frac{5430546647520482430705}{234819318040520095467727} a^{4} - \frac{6300228918489714881274153}{25595305666416690405982243} a^{3} - \frac{5069907689516984859905010}{25595305666416690405982243} a^{2} - \frac{21828437423361996743815}{382019487558458065760929} a + \frac{7664236997431083131838797}{25595305666416690405982243}$, $\frac{1}{386405956414781837303202832992493} a^{19} + \frac{7548366}{386405956414781837303202832992493} a^{18} + \frac{1033189956025629760894200582176}{386405956414781837303202832992493} a^{17} + \frac{31502863940672069464338154399}{5767253080817639362734370641679} a^{16} + \frac{53563293803340551288364733578736}{386405956414781837303202832992493} a^{15} + \frac{141387291647359114830713624937629}{386405956414781837303202832992493} a^{14} - \frac{4781518380179471781677130278651}{386405956414781837303202832992493} a^{13} - \frac{16914064969273916049757676687904}{386405956414781837303202832992493} a^{12} - \frac{128879228450847160211898018649962}{386405956414781837303202832992493} a^{11} + \frac{159706113659959298711265025030658}{386405956414781837303202832992493} a^{10} - \frac{206499971486276035320279368925}{3545008774447539791772503054977} a^{9} + \frac{23997348129449283669276841596732}{386405956414781837303202832992493} a^{8} + \frac{159388581456601651996500226017596}{386405956414781837303202832992493} a^{7} - \frac{19250063683635976000591821477582}{386405956414781837303202832992493} a^{6} + \frac{17467700925067171204333090329215}{386405956414781837303202832992493} a^{5} + \frac{96277173051478254268385753880205}{386405956414781837303202832992493} a^{4} + \frac{160811628507517936746961723460387}{386405956414781837303202832992493} a^{3} - \frac{138123025993934556796302556728137}{386405956414781837303202832992493} a^{2} + \frac{181601889230969693068149456238716}{386405956414781837303202832992493} a + \frac{41607206281613293046816788261574}{386405956414781837303202832992493}$
Class group and class number
$C_{5}\times C_{22550}$, which has order $112750$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-209}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{11}, \sqrt{-19})\), \(\Q(\zeta_{11})^+\), 10.0.5978636205811106816.3, \(\Q(\zeta_{44})^+\), 10.0.530773810885219.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $19$ | 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |