Normalized defining polynomial
\( x^{20} - 10 x^{19} + 75 x^{18} - 390 x^{17} + 1875 x^{16} - 7450 x^{15} + 28295 x^{14} - 92265 x^{13} + 292905 x^{12} - 807385 x^{11} + 2196472 x^{10} - 5146960 x^{9} + 12113975 x^{8} - 23857065 x^{7} + 48478500 x^{6} - 77459025 x^{5} + 134373945 x^{4} - 159513940 x^{3} + 232462355 x^{2} - 158171460 x + 190774501 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3568750257720821537077426910400390625=5^{34}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(475=5^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{475}(1,·)$, $\chi_{475}(324,·)$, $\chi_{475}(134,·)$, $\chi_{475}(341,·)$, $\chi_{475}(151,·)$, $\chi_{475}(474,·)$, $\chi_{475}(284,·)$, $\chi_{475}(94,·)$, $\chi_{475}(96,·)$, $\chi_{475}(419,·)$, $\chi_{475}(229,·)$, $\chi_{475}(39,·)$, $\chi_{475}(189,·)$, $\chi_{475}(436,·)$, $\chi_{475}(286,·)$, $\chi_{475}(246,·)$, $\chi_{475}(56,·)$, $\chi_{475}(379,·)$, $\chi_{475}(381,·)$, $\chi_{475}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{20956633553867130314849059848437738815189306731669624097844149} a^{19} + \frac{10316081396593987457357259827234711855803961978310847524431674}{20956633553867130314849059848437738815189306731669624097844149} a^{18} - \frac{5385658786725794480047771916313040918715586150138332101763597}{20956633553867130314849059848437738815189306731669624097844149} a^{17} + \frac{8070814778917631665223761530217828024719888962162368004643830}{20956633553867130314849059848437738815189306731669624097844149} a^{16} - \frac{2406158194385316852830931327364088445429039350411378959763800}{20956633553867130314849059848437738815189306731669624097844149} a^{15} - \frac{329203922095578984472842661755773318635225496764450361297098}{20956633553867130314849059848437738815189306731669624097844149} a^{14} + \frac{8545410684045281810633230697814101035110293268588370280006925}{20956633553867130314849059848437738815189306731669624097844149} a^{13} + \frac{10141406653452721164743025718521481830789686056173993052739181}{20956633553867130314849059848437738815189306731669624097844149} a^{12} - \frac{5853561297447580199977293616800953514710390358797819574081072}{20956633553867130314849059848437738815189306731669624097844149} a^{11} + \frac{9305481079083423332819462702091296820093993817862899000934124}{20956633553867130314849059848437738815189306731669624097844149} a^{10} - \frac{4482570532051483692289295264899000465972740435938019414199648}{20956633553867130314849059848437738815189306731669624097844149} a^{9} - \frac{4739520478687461415841652932149809349045771721170893892304987}{20956633553867130314849059848437738815189306731669624097844149} a^{8} - \frac{9146081872303256774136983269031503606681052562275529558388415}{20956633553867130314849059848437738815189306731669624097844149} a^{7} - \frac{3118634891054928715369542911851622030329346235935297715805041}{20956633553867130314849059848437738815189306731669624097844149} a^{6} - \frac{2315179470047081255430497253124368041557428696687958057336325}{20956633553867130314849059848437738815189306731669624097844149} a^{5} - \frac{3543939664224829922080652055112823873528033246508460220638349}{20956633553867130314849059848437738815189306731669624097844149} a^{4} + \frac{4653378230619741116181711028991345265452188825882243812862362}{20956633553867130314849059848437738815189306731669624097844149} a^{3} - \frac{8771758297941805133007435221652413777166906895002601410914712}{20956633553867130314849059848437738815189306731669624097844149} a^{2} - \frac{7044228332121201694069743829826163510151517725958884818245968}{20956633553867130314849059848437738815189306731669624097844149} a - \frac{3539436754242449531045370566004053118910047837713648027169241}{20956633553867130314849059848437738815189306731669624097844149}$
Class group and class number
$C_{11}\times C_{6820}$, which has order $75020$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{5}, \sqrt{-19})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.1889113616943359375.3, 10.0.377822723388671875.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $19$ | 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |