Normalized defining polynomial
\( x^{20} - 6 x^{19} + 17 x^{18} - 30 x^{17} - 56 x^{16} + 282 x^{15} - 1314 x^{14} + 6402 x^{13} - 18345 x^{12} + 53466 x^{11} - 50276 x^{10} - 121860 x^{9} - 59897 x^{8} - 256473 x^{7} + 2786196 x^{6} - 16211013 x^{5} + 92157240 x^{4} - 196740684 x^{3} + 364129143 x^{2} - 482420925 x + 541725625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35635746108202593567757236917916961401=3^{10}\cdot 7^{10}\cdot 271^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 271$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{10} + \frac{2}{7} a^{9} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{2}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{12} + \frac{1}{7} a^{10} + \frac{1}{7} a^{8} - \frac{1}{7} a^{6} - \frac{1}{7} a^{4} - \frac{1}{7} a^{2}$, $\frac{1}{133} a^{13} + \frac{9}{133} a^{12} - \frac{8}{133} a^{11} - \frac{7}{19} a^{10} + \frac{18}{133} a^{9} + \frac{5}{133} a^{8} - \frac{9}{19} a^{7} + \frac{20}{133} a^{6} - \frac{12}{133} a^{5} - \frac{41}{133} a^{4} - \frac{17}{133} a^{3} + \frac{3}{133} a^{2} - \frac{8}{19} a$, $\frac{1}{133} a^{14} + \frac{6}{133} a^{12} + \frac{4}{133} a^{11} + \frac{3}{133} a^{10} - \frac{62}{133} a^{9} - \frac{51}{133} a^{8} - \frac{2}{133} a^{7} + \frac{55}{133} a^{6} + \frac{29}{133} a^{5} - \frac{47}{133} a^{4} + \frac{4}{133} a^{3} - \frac{64}{133} a^{2} - \frac{4}{19} a$, $\frac{1}{4655} a^{15} - \frac{16}{4655} a^{14} + \frac{9}{4655} a^{13} - \frac{274}{4655} a^{12} + \frac{276}{4655} a^{11} + \frac{327}{665} a^{10} + \frac{1584}{4655} a^{9} + \frac{295}{931} a^{8} - \frac{1413}{4655} a^{7} - \frac{2159}{4655} a^{6} + \frac{9}{95} a^{5} + \frac{1963}{4655} a^{4} - \frac{37}{95} a^{3} - \frac{326}{665} a^{2} - \frac{16}{95} a$, $\frac{1}{4655} a^{16} - \frac{2}{4655} a^{14} + \frac{2}{931} a^{13} - \frac{48}{4655} a^{12} - \frac{17}{931} a^{11} - \frac{1167}{4655} a^{10} + \frac{849}{4655} a^{9} - \frac{1578}{4655} a^{8} + \frac{1833}{4655} a^{7} - \frac{1868}{4655} a^{6} + \frac{1144}{4655} a^{5} - \frac{458}{931} a^{4} - \frac{60}{133} a^{3} - \frac{3}{665} a^{2} + \frac{14}{95} a$, $\frac{1}{4655} a^{17} + \frac{13}{4655} a^{14} + \frac{1}{931} a^{13} - \frac{108}{4655} a^{12} - \frac{18}{931} a^{11} - \frac{173}{4655} a^{10} + \frac{276}{931} a^{9} - \frac{8}{245} a^{8} - \frac{319}{4655} a^{7} + \frac{1446}{4655} a^{6} + \frac{517}{4655} a^{5} + \frac{4}{245} a^{4} + \frac{174}{665} a^{3} - \frac{99}{665} a^{2} + \frac{3}{95} a$, $\frac{1}{8158237807775408605} a^{18} - \frac{72522783994511}{1631647561555081721} a^{17} + \frac{550715051593017}{8158237807775408605} a^{16} + \frac{151632301165322}{8158237807775408605} a^{15} - \frac{3766100453191249}{1165462543967915515} a^{14} + \frac{20244095039920383}{8158237807775408605} a^{13} + \frac{249703452168466788}{8158237807775408605} a^{12} - \frac{311811784126088424}{8158237807775408605} a^{11} - \frac{3101615353577491938}{8158237807775408605} a^{10} + \frac{425346919805014891}{1165462543967915515} a^{9} + \frac{647211535793208373}{1631647561555081721} a^{8} + \frac{8327544308852702}{95979268326769513} a^{7} - \frac{85414855856179788}{1631647561555081721} a^{6} + \frac{529945399566354384}{1165462543967915515} a^{5} - \frac{80014092116560059}{233092508793583103} a^{4} - \frac{978919041920633}{33298929827654729} a^{3} - \frac{37226734417720307}{166494649138273645} a^{2} + \frac{211147569738278}{1251839467205065} a - \frac{947143819820}{13177257549527}$, $\frac{1}{33300064561385482837743128991355497207929975} a^{19} + \frac{375228333172572815027849}{33300064561385482837743128991355497207929975} a^{18} - \frac{3272797054639318237096779309500749343573}{33300064561385482837743128991355497207929975} a^{17} + \frac{359959470460931746603235441496042277958}{6660012912277096567548625798271099441585995} a^{16} + \frac{69593060453886490043835803132402722292}{4757152080197926119677589855907928172561425} a^{15} + \frac{991410194473163267150842821051448920653}{1148278088323637339232521689357086110618275} a^{14} - \frac{33725691375027369116607084558723424910189}{33300064561385482837743128991355497207929975} a^{13} + \frac{12263967567508702284099942424730935259738}{1752634976915025412512796262702920905680525} a^{12} + \frac{3370224025728169780676747249449917830743}{1332002582455419313509725159654219888317199} a^{11} - \frac{48673819796615184948691158871463382470913}{164039726903376762747503098479583730088325} a^{10} - \frac{372593783263382524254001215725688962741341}{33300064561385482837743128991355497207929975} a^{9} - \frac{1199412093175020125583840063706146975367937}{6660012912277096567548625798271099441585995} a^{8} - \frac{15821085706181402739160439042610841630873052}{33300064561385482837743128991355497207929975} a^{7} - \frac{12617109588081139843438441333105910651766}{39976067900822908568719242486621245147575} a^{6} + \frac{104283309332559065247417683680656095541164}{679593154313989445668227122272561167508775} a^{5} + \frac{238105546040575355197266354170505259580283}{679593154313989445668227122272561167508775} a^{4} + \frac{47999644561314655851460448276795690210}{3883389453222796832389869270128920957193} a^{3} - \frac{5663240205950519078117325459674066533194}{13869248047224274401392390250460431989975} a^{2} - \frac{1807689259990566743521251748651675282396}{5109722964766837937355091144906474943675} a - \frac{76343720553198033549853304192663880}{1536758786396041484918824404483150359}$
Class group and class number
$C_{58}\times C_{174}$, which has order $10092$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{227002405619765552532824}{42960463921711350908262596858225} a^{19} + \frac{56329089473098914311297}{2527086113041844171074270403425} a^{18} - \frac{1775019398771613940912408}{42960463921711350908262596858225} a^{17} + \frac{17308074879947558492179}{8592092784342270181652519371645} a^{16} + \frac{2611523155953604170428187}{6137209131673050129751799551175} a^{15} - \frac{16942992925497691105757518}{42960463921711350908262596858225} a^{14} + \frac{155875202678428069089698596}{42960463921711350908262596858225} a^{13} - \frac{872091234553851828579270773}{42960463921711350908262596858225} a^{12} + \frac{415784073135469142977646758}{8592092784342270181652519371645} a^{11} - \frac{2083400244464798955298444}{19000647466480031361460679725} a^{10} - \frac{7177648829836324721495546461}{42960463921711350908262596858225} a^{9} + \frac{5299556183691243077951842884}{8592092784342270181652519371645} a^{8} + \frac{86564836802462463047405632883}{42960463921711350908262596858225} a^{7} - \frac{1363807187573929475487690634}{6137209131673050129751799551175} a^{6} - \frac{8434774917975810525612764951}{876744161667578589964542793025} a^{5} + \frac{59743420119315602622227463548}{876744161667578589964542793025} a^{4} - \frac{1205767378303689843078506639}{5009966638100449085511673103} a^{3} + \frac{15389541296002707544936801557}{125249165952511227137791827575} a^{2} - \frac{94562633017542943175553438}{387768315642449619621646525} a + \frac{1184294886764986908035361}{1982574846893727378516689} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80801816.0664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{1897}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-5691}) \), \(\Q(\sqrt{-3}, \sqrt{1897})\), 5.5.3598609.1 x5, 10.10.24566124836069257.1, 10.0.3146846776576083.1 x5, 10.0.5969568335164829451.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 271 | Data not computed | ||||||