Normalized defining polynomial
\( x^{20} + 440 x^{18} + 67980 x^{16} + 4767400 x^{14} + 177930500 x^{12} + 3781457196 x^{10} + 45938756545 x^{8} + 297653591840 x^{6} + 809109957150 x^{4} + 108823443300 x^{2} + 2519337249 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3558347080635028147840000000000000000000000000000000000=2^{40}\cdot 5^{34}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $534.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2200=2^{3}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2200}(1,·)$, $\chi_{2200}(1411,·)$, $\chi_{2200}(1281,·)$, $\chi_{2200}(2121,·)$, $\chi_{2200}(1291,·)$, $\chi_{2200}(909,·)$, $\chi_{2200}(79,·)$, $\chi_{2200}(789,·)$, $\chi_{2200}(919,·)$, $\chi_{2200}(731,·)$, $\chi_{2200}(1571,·)$, $\chi_{2200}(549,·)$, $\chi_{2200}(359,·)$, $\chi_{2200}(1961,·)$, $\chi_{2200}(239,·)$, $\chi_{2200}(1841,·)$, $\chi_{2200}(1651,·)$, $\chi_{2200}(629,·)$, $\chi_{2200}(2199,·)$, $\chi_{2200}(1469,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{8} - \frac{1}{9} a^{4} - \frac{7}{27} a^{2} + \frac{1}{3}$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{891} a^{10} - \frac{1}{27} a^{6} - \frac{5}{81} a^{4} - \frac{8}{27} a^{2} - \frac{1}{3}$, $\frac{1}{11583} a^{11} + \frac{1}{351} a^{9} - \frac{19}{351} a^{7} + \frac{121}{1053} a^{5} + \frac{19}{117} a^{3} + \frac{1}{39} a$, $\frac{1}{34749} a^{12} - \frac{19}{34749} a^{10} + \frac{7}{1053} a^{8} - \frac{74}{3159} a^{6} - \frac{154}{3159} a^{4} + \frac{53}{117} a^{2} + \frac{1}{3}$, $\frac{1}{34749} a^{13} - \frac{1}{34749} a^{11} - \frac{1}{1053} a^{9} - \frac{164}{3159} a^{7} + \frac{386}{3159} a^{5} - \frac{109}{1053} a^{3} + \frac{31}{117} a$, $\frac{1}{104247} a^{14} + \frac{1}{104247} a^{12} - \frac{32}{104247} a^{10} - \frac{122}{9477} a^{8} + \frac{472}{9477} a^{6} + \frac{574}{9477} a^{4} - \frac{239}{1053} a^{2} + \frac{4}{9}$, $\frac{1}{104247} a^{15} + \frac{1}{104247} a^{13} + \frac{4}{104247} a^{11} - \frac{14}{9477} a^{9} + \frac{526}{9477} a^{7} + \frac{718}{9477} a^{5} - \frac{23}{1053} a^{3} + \frac{25}{117} a$, $\frac{1}{12196899} a^{16} - \frac{1}{369603} a^{14} - \frac{2}{369603} a^{12} + \frac{2905}{12196899} a^{10} + \frac{5401}{369603} a^{8} + \frac{107}{369603} a^{6} + \frac{114170}{1108809} a^{4} - \frac{41833}{123201} a^{2} - \frac{34}{81}$, $\frac{1}{475679061} a^{17} - \frac{245}{158559687} a^{15} - \frac{256}{158559687} a^{13} - \frac{2009}{475679061} a^{11} - \frac{7118}{14414517} a^{9} - \frac{698968}{14414517} a^{7} + \frac{6500966}{43243551} a^{5} + \frac{417977}{4804839} a^{3} - \frac{1411}{3159} a$, $\frac{1}{200405402331726544657337577087} a^{18} + \frac{48967665281885793952}{66801800777242181552445859029} a^{16} + \frac{21084143954854109279648}{66801800777242181552445859029} a^{14} - \frac{2603816718482912094116507}{200405402331726544657337577087} a^{12} - \frac{30059879575540108965404044}{66801800777242181552445859029} a^{10} + \frac{103046469636602035480989185}{6072890979749289232040532639} a^{8} + \frac{443277533593043286094445999}{18218672939247867696121597917} a^{6} - \frac{252824760428264839462265747}{2024296993249763077346844213} a^{4} + \frac{5115791118400115259955570}{17301683702989428011511489} a^{2} - \frac{4574279312271313257760}{11375202960545317561809}$, $\frac{1}{2204459425648991991230713347957} a^{19} - \frac{178146915538363092589}{200405402331726544657337577087} a^{17} + \frac{24844349652980680508156}{7422422308582464616938428781} a^{15} - \frac{246464046117254015188802}{18218672939247867696121597917} a^{13} + \frac{575273135859954620768681}{200405402331726544657337577087} a^{11} - \frac{71512045534536423802012006}{22267266925747393850815286343} a^{9} - \frac{111270876797898509635063466}{18218672939247867696121597917} a^{7} - \frac{375428435865168179337538154}{18218672939247867696121597917} a^{5} + \frac{331763460005612302909634440}{2024296993249763077346844213} a^{3} - \frac{34903873685620570964897}{1330898746383802154731653} a$
Class group and class number
$C_{410}\times C_{14330730}$, which has order $5875599300$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3112036931534.2773 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.4 | $x^{10} - 99$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.4 | $x^{10} - 99$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |