Normalized defining polynomial
\( x^{20} - 7260 x^{16} + 12100 x^{14} + 12022560 x^{12} - 523936776 x^{10} + 13313608825 x^{8} + 1227599011980 x^{6} + 16018850939850 x^{4} - 506924202145680 x^{2} + 3859291108515249 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3558347080635028147840000000000000000000000000000000000=2^{40}\cdot 5^{34}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $534.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2200=2^{3}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2200}(1,·)$, $\chi_{2200}(811,·)$, $\chi_{2200}(1281,·)$, $\chi_{2200}(2121,·)$, $\chi_{2200}(1931,·)$, $\chi_{2200}(909,·)$, $\chi_{2200}(789,·)$, $\chi_{2200}(1879,·)$, $\chi_{2200}(199,·)$, $\chi_{2200}(491,·)$, $\chi_{2200}(549,·)$, $\chi_{2200}(1961,·)$, $\chi_{2200}(1451,·)$, $\chi_{2200}(1841,·)$, $\chi_{2200}(839,·)$, $\chi_{2200}(1971,·)$, $\chi_{2200}(629,·)$, $\chi_{2200}(1159,·)$, $\chi_{2200}(1469,·)$, $\chi_{2200}(1919,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{891} a^{10} + \frac{1}{27} a^{8} - \frac{1}{27} a^{6} + \frac{13}{81} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{891} a^{11} - \frac{1}{27} a^{7} - \frac{5}{81} a^{5} + \frac{1}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{2673} a^{12} - \frac{1}{2673} a^{10} + \frac{4}{81} a^{8} + \frac{7}{243} a^{6} - \frac{1}{243} a^{4} - \frac{2}{27} a^{2}$, $\frac{1}{2673} a^{13} - \frac{1}{2673} a^{11} - \frac{11}{243} a^{7} - \frac{10}{243} a^{5} - \frac{11}{81} a^{3} + \frac{2}{9} a$, $\frac{1}{24057} a^{14} - \frac{2}{24057} a^{12} - \frac{2}{24057} a^{10} - \frac{86}{2187} a^{8} - \frac{8}{2187} a^{6} + \frac{253}{2187} a^{4} + \frac{56}{243} a^{2} + \frac{1}{3}$, $\frac{1}{216513} a^{15} + \frac{34}{216513} a^{13} + \frac{97}{216513} a^{11} + \frac{22}{19683} a^{9} + \frac{811}{19683} a^{7} - \frac{701}{19683} a^{5} - \frac{340}{2187} a^{3} + \frac{13}{27} a$, $\frac{1}{9310059} a^{16} - \frac{1}{846369} a^{14} - \frac{542}{9310059} a^{12} + \frac{4706}{9310059} a^{10} - \frac{8441}{846369} a^{8} - \frac{5444}{846369} a^{6} - \frac{1507}{31347} a^{4} - \frac{811}{10449} a^{2} + \frac{4}{129}$, $\frac{1}{567913599} a^{17} + \frac{1064}{567913599} a^{15} - \frac{47584}{567913599} a^{13} + \frac{31846}{63101511} a^{11} + \frac{77903}{51628509} a^{9} - \frac{659173}{51628509} a^{7} + \frac{1170148}{51628509} a^{5} - \frac{668854}{5736501} a^{3} + \frac{31426}{70821} a$, $\frac{1}{278589569602000724015243228993667962126881520973} a^{18} - \frac{4122264846804374101318619743634078606}{1146459134164612032984540037010979268011858111} a^{16} - \frac{902948634396131190542329192561459503571610}{92863189867333574671747742997889320708960506991} a^{14} - \frac{12327354190956153722926443861272123875628048}{278589569602000724015243228993667962126881520973} a^{12} + \frac{13550181963658571967759782102708514525651692}{30954396622444524890582580999296440236320168997} a^{10} - \frac{369002209699873321703597553163441441571008046}{8442108169757597697431612999808120064450955181} a^{8} - \frac{1357584805297313562512897869491075954698039851}{25326324509272793092294838999424360193352865543} a^{6} + \frac{301734676526004144754684271045891762750703643}{2814036056585865899143870999936040021483651727} a^{4} - \frac{6594729586232835218020967275047323346992023}{34741185883776122211652728394272099030662367} a^{2} + \frac{1679587316558258962480965250864606874817}{7031205400480899051133926005721938682587}$, $\frac{1}{106142626018362275849807670246587493570341859490713} a^{19} + \frac{67362742490083825559140663025252441845}{92863189867333574671747742997889320708960506991} a^{17} - \frac{37575426773639227790403029681102903133769676}{35380875339454091949935890082195831190113953163571} a^{15} - \frac{12578894336728129790493154603717518179796136682}{106142626018362275849807670246587493570341859490713} a^{13} + \frac{143210036945723529967667023746848264059937120}{1072147737559214907573814850975631248185271307987} a^{11} + \frac{18897041499884413120590828331054831669023464926}{3216443212677644722721444552926893744555813923961} a^{9} + \frac{431258326726525953081730824566956616108477225156}{9649329638032934168164333658780681233667441771883} a^{7} + \frac{133775595053839232599047831542387618558227775917}{1072147737559214907573814850975631248185271307987} a^{5} + \frac{5905835782681821277451481068789824324689287323}{39709175465156107687919068554653009192047085481} a^{3} - \frac{46873495405938632361380678144324392419465940}{490236734137729724542210722896950730766013401} a$
Class group and class number
$C_{22}\times C_{80111130}$, which has order $1762444860$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13680393897245.906 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||