Normalized defining polynomial
\( x^{20} - 4 x^{19} + 31 x^{18} - 110 x^{17} + 345 x^{16} - 1180 x^{15} + 1885 x^{14} - 4747 x^{13} + 11112 x^{12} + 13337 x^{11} + 84784 x^{10} + 194067 x^{9} + 262887 x^{8} + 519267 x^{7} + 99143 x^{6} + 368252 x^{5} + 132457 x^{4} + 209487 x^{3} + 887494 x^{2} - 725088 x + 1164241 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3547256202968983472963275805780639744=2^{15}\cdot 19^{11}\cdot 43^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{25473261051587584394802451661674052131955767684858079196442492495} a^{19} + \frac{6520749705148208334435755692318855161705748016606873023043403443}{25473261051587584394802451661674052131955767684858079196442492495} a^{18} - \frac{11570901400494646776392100858072553257229588472381080334248061068}{25473261051587584394802451661674052131955767684858079196442492495} a^{17} + \frac{1613987581038825912641815491993937933867597058576163631736715084}{25473261051587584394802451661674052131955767684858079196442492495} a^{16} + \frac{10504572012829535140092949878517226366137434729100535154354454023}{25473261051587584394802451661674052131955767684858079196442492495} a^{15} + \frac{1528199797323506790319270243084564806465655276357906199727960031}{25473261051587584394802451661674052131955767684858079196442492495} a^{14} - \frac{122911563006488504041958397094067469428694064052781936514812606}{1959481619352891107292496281667234779381212898835236861264807115} a^{13} - \frac{244508109865831626931150235062493458293364480048613185082726918}{25473261051587584394802451661674052131955767684858079196442492495} a^{12} + \frac{9492005119001573399746613541292877911465864653401841610101785311}{25473261051587584394802451661674052131955767684858079196442492495} a^{11} + \frac{969897054957329570344052415479470107339513127748625839057147864}{25473261051587584394802451661674052131955767684858079196442492495} a^{10} + \frac{4812771088495144263678825976738534712372354172852722670009757892}{25473261051587584394802451661674052131955767684858079196442492495} a^{9} + \frac{9154969865327323547806646931560938837231826978836924074145488581}{25473261051587584394802451661674052131955767684858079196442492495} a^{8} + \frac{10037479327702146982340185394453316310873233572855419959659021314}{25473261051587584394802451661674052131955767684858079196442492495} a^{7} - \frac{746567826565385692456733550566758053392758526003450649597650851}{5094652210317516878960490332334810426391153536971615839288498499} a^{6} - \frac{7421534019923691064139137016365347801637542408047952706803338247}{25473261051587584394802451661674052131955767684858079196442492495} a^{5} - \frac{2969927112118644578156287488884685510945012215775922250571171197}{25473261051587584394802451661674052131955767684858079196442492495} a^{4} + \frac{970091485809163726437942960116670972350795242207161114942479171}{1959481619352891107292496281667234779381212898835236861264807115} a^{3} + \frac{9962681273432982148157989445711889869864632137665747813167463963}{25473261051587584394802451661674052131955767684858079196442492495} a^{2} - \frac{1715286524405500818621119377155748565564426456361530074429350954}{5094652210317516878960490332334810426391153536971615839288498499} a - \frac{4471690754039545211158098266219905104088028248868960189582862}{23608212281360133822801160020087166016641119263075142906804905}$
Class group and class number
$C_{2}\times C_{1134}$, which has order $2268$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4747366.99665 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 160 conjugacy class representatives for t20n423 are not computed |
| Character table for t20n423 is not computed |
Intermediate fields
| \(\Q(\sqrt{817}) \), 5.5.667489.1 x5, 10.10.364007458703857.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.15.7 | $x^{10} - 10 x^{8} + 56 x^{6} - 176 x^{4} + 272 x^{2} - 1184$ | $2$ | $5$ | $15$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 3]^{5}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.4.3.1 | $x^{4} + 387$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |