Normalized defining polynomial
\( x^{20} - 6 x^{19} + 19 x^{18} - 36 x^{17} + 21 x^{16} + 99 x^{15} - 360 x^{14} + 628 x^{13} - 540 x^{12} - 403 x^{11} + 1961 x^{10} - 3254 x^{9} + 3627 x^{8} - 2576 x^{7} + 2505 x^{6} - 3141 x^{5} + 3595 x^{4} - 2846 x^{3} + 1138 x^{2} - 678 x + 443 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35301481425473668370514944=2^{10}\cdot 23^{3}\cdot 4903^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} + \frac{5}{17} a^{17} + \frac{3}{17} a^{16} - \frac{1}{17} a^{15} + \frac{1}{17} a^{14} - \frac{6}{17} a^{13} - \frac{4}{17} a^{12} + \frac{7}{17} a^{11} + \frac{8}{17} a^{10} + \frac{4}{17} a^{9} - \frac{8}{17} a^{8} - \frac{5}{17} a^{7} - \frac{8}{17} a^{6} + \frac{3}{17} a^{5} - \frac{5}{17} a^{4} + \frac{8}{17} a^{3} - \frac{8}{17} a^{2} + \frac{6}{17}$, $\frac{1}{13008954086436862586811628798245683} a^{19} - \frac{55326821720607087849303768400338}{13008954086436862586811628798245683} a^{18} - \frac{5800820905070022860615732206281708}{13008954086436862586811628798245683} a^{17} - \frac{5801358767925269505182863563364420}{13008954086436862586811628798245683} a^{16} + \frac{5039123190553931651737708711796177}{13008954086436862586811628798245683} a^{15} + \frac{3749897378498606117790937755886010}{13008954086436862586811628798245683} a^{14} - \frac{3128619514051614470296323926140108}{13008954086436862586811628798245683} a^{13} - \frac{5793404704635657904982089448896992}{13008954086436862586811628798245683} a^{12} + \frac{5045228918118977100736322309013361}{13008954086436862586811628798245683} a^{11} + \frac{3487999082844881382856071447252708}{13008954086436862586811628798245683} a^{10} - \frac{4037104114119098102461178561916256}{13008954086436862586811628798245683} a^{9} - \frac{11586329226915056468237512628264}{765232593319815446283036988132099} a^{8} + \frac{3411800193794408170503487861476}{54430770236137500363228572377597} a^{7} + \frac{3049965029664903665824070568746162}{13008954086436862586811628798245683} a^{6} + \frac{3544493836534097360949175001658927}{13008954086436862586811628798245683} a^{5} - \frac{3853960741181417201191250497094106}{13008954086436862586811628798245683} a^{4} + \frac{1146623350019877197438571306347547}{13008954086436862586811628798245683} a^{3} + \frac{6459851863936694665293232766619108}{13008954086436862586811628798245683} a^{2} + \frac{1369700553438672379761833762557255}{13008954086436862586811628798245683} a - \frac{5877902322142240031018919829551884}{13008954086436862586811628798245683}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23151.9851388 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n993 are not computed |
| Character table for t20n993 is not computed |
Intermediate fields
| 5.3.4903.1, 10.0.552906407.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 23 | Data not computed | ||||||
| 4903 | Data not computed | ||||||