Normalized defining polynomial
\( x^{20} + 20 x^{18} - 20 x^{17} + 645 x^{16} + 116 x^{15} + 14390 x^{14} + 7040 x^{13} + 253690 x^{12} + 194160 x^{11} + 3602088 x^{10} + 3347020 x^{9} + 39836375 x^{8} + 38866760 x^{7} + 329003610 x^{6} + 289047932 x^{5} + 1892348205 x^{4} + 1276163740 x^{3} + 6743617240 x^{2} + 2623654180 x + 11102390257 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3529177391334400000000000000000000000000000000=2^{40}\cdot 5^{32}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $189.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2600=2^{3}\cdot 5^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2600}(1,·)$, $\chi_{2600}(1091,·)$, $\chi_{2600}(261,·)$, $\chi_{2600}(1351,·)$, $\chi_{2600}(521,·)$, $\chi_{2600}(1611,·)$, $\chi_{2600}(781,·)$, $\chi_{2600}(1871,·)$, $\chi_{2600}(1041,·)$, $\chi_{2600}(2131,·)$, $\chi_{2600}(1301,·)$, $\chi_{2600}(2391,·)$, $\chi_{2600}(1561,·)$, $\chi_{2600}(1821,·)$, $\chi_{2600}(2081,·)$, $\chi_{2600}(2341,·)$, $\chi_{2600}(51,·)$, $\chi_{2600}(311,·)$, $\chi_{2600}(571,·)$, $\chi_{2600}(831,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{7} a^{12} - \frac{1}{7} a^{6}$, $\frac{1}{49} a^{13} + \frac{3}{49} a^{12} + \frac{2}{49} a^{11} - \frac{1}{49} a^{10} - \frac{3}{49} a^{9} - \frac{2}{49} a^{8} - \frac{1}{49} a^{7} + \frac{18}{49} a^{6} + \frac{12}{49} a^{5} - \frac{6}{49} a^{4} - \frac{18}{49} a^{3} - \frac{12}{49} a^{2} + \frac{1}{7} a$, $\frac{1}{49} a^{14} - \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{49} a^{15} - \frac{2}{49} a^{9} + \frac{1}{49} a^{3}$, $\frac{1}{49} a^{16} - \frac{2}{49} a^{10} + \frac{1}{49} a^{4}$, $\frac{1}{343} a^{17} - \frac{1}{343} a^{15} + \frac{2}{343} a^{14} + \frac{1}{343} a^{13} - \frac{4}{343} a^{12} + \frac{2}{49} a^{11} + \frac{20}{343} a^{10} + \frac{13}{343} a^{9} + \frac{15}{343} a^{8} - \frac{1}{343} a^{7} - \frac{171}{343} a^{6} - \frac{99}{343} a^{5} + \frac{22}{343} a^{4} + \frac{163}{343} a^{3} + \frac{165}{343} a^{2} + \frac{8}{49} a + \frac{2}{7}$, $\frac{1}{1645503364949143830907} a^{18} - \frac{1118256242435930823}{1645503364949143830907} a^{17} + \frac{2119872142865311883}{1645503364949143830907} a^{16} + \frac{3406769324082235121}{1645503364949143830907} a^{15} - \frac{10223424912187942029}{1645503364949143830907} a^{14} + \frac{9488563401656686881}{1645503364949143830907} a^{13} + \frac{92938501658896673217}{1645503364949143830907} a^{12} - \frac{44454953856104774277}{1645503364949143830907} a^{11} - \frac{16637778848400070623}{235071909278449118701} a^{10} - \frac{19438504150846013868}{1645503364949143830907} a^{9} - \frac{5477435624308721908}{1645503364949143830907} a^{8} + \frac{9319114634230453057}{1645503364949143830907} a^{7} - \frac{595960398123800277286}{1645503364949143830907} a^{6} - \frac{237042949015926813478}{1645503364949143830907} a^{5} - \frac{211534481774191881962}{1645503364949143830907} a^{4} - \frac{796172408076845913811}{1645503364949143830907} a^{3} + \frac{493318652240624143895}{1645503364949143830907} a^{2} + \frac{11071269238394914072}{235071909278449118701} a + \frac{11005257822718739312}{33581701325492731243}$, $\frac{1}{198369984663896754222009742580062443108214516843} a^{19} - \frac{60019127546732073701779045}{198369984663896754222009742580062443108214516843} a^{18} + \frac{240048955009371253262399251964813498876114618}{198369984663896754222009742580062443108214516843} a^{17} + \frac{876957130261453743110024766765991264813773997}{198369984663896754222009742580062443108214516843} a^{16} + \frac{167376258906421070722438021446976579809418009}{28338569237699536317429963225723206158316359549} a^{15} - \frac{997894581386531821804240502921844723437264858}{198369984663896754222009742580062443108214516843} a^{14} - \frac{193453883248594555273213827901742596031718607}{28338569237699536317429963225723206158316359549} a^{13} - \frac{4163020972460440908101505855879920605211396453}{198369984663896754222009742580062443108214516843} a^{12} + \frac{14024818129529236639491922176508436505050408906}{198369984663896754222009742580062443108214516843} a^{11} + \frac{13098090684490482862953398714084263932085984436}{198369984663896754222009742580062443108214516843} a^{10} - \frac{7613843858069669603560626307138540409997674504}{198369984663896754222009742580062443108214516843} a^{9} + \frac{10892388032112916705078393008895819153316117974}{198369984663896754222009742580062443108214516843} a^{8} - \frac{6801759486318043946789293163941229789490753930}{198369984663896754222009742580062443108214516843} a^{7} + \frac{7191835605042041796780710133417421651586106035}{198369984663896754222009742580062443108214516843} a^{6} + \frac{77761749801311790111311259694393611119927021796}{198369984663896754222009742580062443108214516843} a^{5} + \frac{792066015880070377914946741033054821220853009}{28338569237699536317429963225723206158316359549} a^{4} - \frac{81881294675795765274145006779403386939423216467}{198369984663896754222009742580062443108214516843} a^{3} + \frac{39849910942253191319050553225921906002993808560}{198369984663896754222009742580062443108214516843} a^{2} - \frac{11020364769945468377730062280445367126459518257}{28338569237699536317429963225723206158316359549} a - \frac{549984468432511443868154713970468634966536614}{4048367033957076616775709032246172308330908507}$
Class group and class number
$C_{5}\times C_{15941130}$, which has order $79705650$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42294001.73672045 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{2}, \sqrt{-13})\), 5.5.390625.1, 10.10.5000000000000000.1, 10.0.58014531250000000000.3, 10.0.1856465000000000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.16.7 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 95 x^{5} + 5 x^{4} + 80 x^{3} + 5 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ |
| 5.10.16.7 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 95 x^{5} + 5 x^{4} + 80 x^{3} + 5 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ | |
| 13 | Data not computed | ||||||