Normalized defining polynomial
\( x^{20} + 220 x^{18} + 18425 x^{16} + 742500 x^{14} + 15290000 x^{12} + 165550000 x^{10} + 988796875 x^{8} + 3289687500 x^{6} + 5813671875 x^{4} + 4726562500 x^{2} + 1181640625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3525175555633378160676822382018560000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(899,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(589,·)$, $\chi_{1320}(1069,·)$, $\chi_{1320}(659,·)$, $\chi_{1320}(469,·)$, $\chi_{1320}(71,·)$, $\chi_{1320}(911,·)$, $\chi_{1320}(349,·)$, $\chi_{1320}(551,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(299,·)$, $\chi_{1320}(109,·)$, $\chi_{1320}(1139,·)$, $\chi_{1320}(311,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(1019,·)$, $\chi_{1320}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{125} a^{6}$, $\frac{1}{125} a^{7}$, $\frac{1}{625} a^{8}$, $\frac{1}{625} a^{9}$, $\frac{1}{34375} a^{10}$, $\frac{1}{34375} a^{11}$, $\frac{1}{171875} a^{12}$, $\frac{1}{171875} a^{13}$, $\frac{1}{859375} a^{14}$, $\frac{1}{859375} a^{15}$, $\frac{1}{98828125} a^{16} - \frac{9}{19765625} a^{14} + \frac{2}{3953125} a^{12} - \frac{2}{790625} a^{10} + \frac{6}{14375} a^{8} - \frac{1}{575} a^{6} + \frac{11}{575} a^{4} - \frac{2}{23} a^{2} + \frac{5}{23}$, $\frac{1}{98828125} a^{17} - \frac{9}{19765625} a^{15} + \frac{2}{3953125} a^{13} - \frac{2}{790625} a^{11} + \frac{6}{14375} a^{9} - \frac{1}{575} a^{7} + \frac{11}{575} a^{5} - \frac{2}{23} a^{3} + \frac{5}{23} a$, $\frac{1}{735554509765625} a^{18} + \frac{49597}{13373718359375} a^{16} - \frac{1394229}{2674743671875} a^{14} + \frac{17857}{534948734375} a^{12} - \frac{90366}{106989746875} a^{10} + \frac{3238501}{4279589875} a^{8} + \frac{61958}{16915375} a^{6} + \frac{1085521}{77810725} a^{4} + \frac{382823}{15562145} a^{2} - \frac{1039438}{3112429}$, $\frac{1}{735554509765625} a^{19} + \frac{49597}{13373718359375} a^{17} - \frac{1394229}{2674743671875} a^{15} + \frac{17857}{534948734375} a^{13} - \frac{90366}{106989746875} a^{11} + \frac{3238501}{4279589875} a^{9} + \frac{61958}{16915375} a^{7} + \frac{1085521}{77810725} a^{5} + \frac{382823}{15562145} a^{3} - \frac{1039438}{3112429} a$
Class group and class number
$C_{2}\times C_{2}\times C_{1084092}$, which has order $4336368$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1746210.0427691017 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-330}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{3}, \sqrt{-110})\), \(\Q(\zeta_{11})^+\), 10.0.58673283984691200000.1, 10.0.241453843558400000.1, 10.10.53339349076992.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |