Normalized defining polynomial
\( x^{20} + 168 x^{18} + 11889 x^{16} + 461268 x^{14} + 10700100 x^{12} + 151861392 x^{10} + 1295855091 x^{8} + 6266008692 x^{6} + 15157215639 x^{4} + 14062322520 x^{2} + 31236921 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3525175555633378160676822382018560000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(131,·)$, $\chi_{1320}(389,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(269,·)$, $\chi_{1320}(79,·)$, $\chi_{1320}(1091,·)$, $\chi_{1320}(1109,·)$, $\chi_{1320}(919,·)$, $\chi_{1320}(799,·)$, $\chi_{1320}(611,·)$, $\chi_{1320}(679,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(491,·)$, $\chi_{1320}(749,·)$, $\chi_{1320}(371,·)$, $\chi_{1320}(439,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{5589} a^{11} + \frac{10}{1863} a^{9} + \frac{5}{621} a^{7} + \frac{1}{23} a^{5} - \frac{7}{69} a^{3} + \frac{5}{23} a$, $\frac{1}{9942831} a^{12} - \frac{4705}{3314277} a^{10} - \frac{5354}{1104759} a^{8} - \frac{3740}{368253} a^{6} + \frac{4846}{122751} a^{4} - \frac{3560}{40917} a^{2} + \frac{101}{593}$, $\frac{1}{9942831} a^{13} + \frac{13}{1104759} a^{11} + \frac{1169}{1104759} a^{9} + \frac{6341}{368253} a^{7} + \frac{6625}{122751} a^{5} + \frac{1383}{13639} a^{3} - \frac{1235}{13639} a$, $\frac{1}{29828493} a^{14} - \frac{698}{368253} a^{10} - \frac{3077}{1104759} a^{8} + \frac{2456}{368253} a^{6} + \frac{6101}{122751} a^{4} + \frac{405}{13639} a^{2} + \frac{212}{593}$, $\frac{1}{29828493} a^{15} + \frac{241}{3314277} a^{11} - \frac{2014}{368253} a^{9} - \frac{5846}{368253} a^{7} - \frac{1129}{40917} a^{5} - \frac{3529}{40917} a^{3} - \frac{3426}{13639} a$, $\frac{1}{89485479} a^{16} - \frac{4174}{3314277} a^{10} + \frac{2402}{1104759} a^{8} - \frac{2221}{368253} a^{6} + \frac{171}{13639} a^{4} - \frac{4723}{40917} a^{2} - \frac{28}{593}$, $\frac{1}{89485479} a^{17} - \frac{1}{144099} a^{11} + \frac{2995}{1104759} a^{9} + \frac{4895}{368253} a^{7} - \frac{673}{40917} a^{5} - \frac{6502}{40917} a^{3} + \frac{6472}{13639} a$, $\frac{1}{268456437} a^{18} + \frac{3892}{3314277} a^{10} + \frac{4504}{1104759} a^{8} - \frac{6205}{368253} a^{6} - \frac{4156}{122751} a^{4} + \frac{2142}{13639} a^{2} - \frac{49}{593}$, $\frac{1}{268456437} a^{19} - \frac{259}{3314277} a^{11} + \frac{3911}{1104759} a^{9} + \frac{106}{122751} a^{7} - \frac{26}{5337} a^{5} - \frac{5434}{40917} a^{3} + \frac{5396}{13639} a$
Class group and class number
$C_{2}\times C_{2}\times C_{410440}$, which has order $1641760$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11184526.893275889 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-66}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{-30}, \sqrt{55})\), \(\Q(\zeta_{11})^+\), 10.0.18775450875101184.1, 10.0.5333934907699200000.1, 10.10.7545432611200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |