Normalized defining polynomial
\( x^{20} + 156 x^{18} + 10553 x^{16} + 405952 x^{14} + 9791644 x^{12} + 154173744 x^{10} + 1603780627 x^{8} + 10980160088 x^{6} + 49164416095 x^{4} + 147156696660 x^{2} + 328492898449 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3525175555633378160676822382018560000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(899,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(659,·)$, $\chi_{1320}(661,·)$, $\chi_{1320}(479,·)$, $\chi_{1320}(359,·)$, $\chi_{1320}(421,·)$, $\chi_{1320}(1319,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(299,·)$, $\chi_{1320}(301,·)$, $\chi_{1320}(239,·)$, $\chi_{1320}(1139,·)$, $\chi_{1320}(181,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(1019,·)$, $\chi_{1320}(1021,·)$, $\chi_{1320}(959,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{573143} a^{11} + \frac{77}{573143} a^{9} + \frac{2156}{573143} a^{7} + \frac{26411}{573143} a^{5} + \frac{132055}{573143} a^{3} + \frac{184877}{573143} a$, $\frac{1}{85325517839} a^{12} + \frac{30726196307}{85325517839} a^{10} + \frac{17695792281}{85325517839} a^{8} - \frac{35743463641}{85325517839} a^{6} - \frac{16132697109}{85325517839} a^{4} + \frac{28860800642}{85325517839} a^{2} - \frac{61125}{148873}$, $\frac{1}{85325517839} a^{13} + \frac{91}{85325517839} a^{11} + \frac{40893183141}{85325517839} a^{9} + \frac{16504855566}{85325517839} a^{7} + \frac{5299208844}{85325517839} a^{5} - \frac{34630705271}{85325517839} a^{3} + \frac{29664457957}{85325517839} a$, $\frac{1}{85325517839} a^{14} - \frac{24774109948}{85325517839} a^{10} + \frac{27372596936}{85325517839} a^{8} + \frac{15584722293}{85325517839} a^{6} - \frac{17089071615}{85325517839} a^{4} - \frac{36902865295}{85325517839} a^{2} + \frac{54074}{148873}$, $\frac{1}{85325517839} a^{15} - \frac{5145}{85325517839} a^{11} - \frac{27508243530}{85325517839} a^{9} + \frac{14780510347}{85325517839} a^{7} + \frac{15722090966}{85325517839} a^{5} + \frac{41827429771}{85325517839} a^{3} + \frac{4693719132}{85325517839} a$, $\frac{1}{85325517839} a^{16} + \frac{35912718157}{85325517839} a^{10} + \frac{17304261879}{85325517839} a^{8} - \frac{7907398934}{85325517839} a^{6} - \frac{24495856526}{85325517839} a^{4} + \frac{27111982362}{85325517839} a^{2} - \frac{68349}{148873}$, $\frac{1}{85325517839} a^{17} - \frac{64506}{85325517839} a^{11} - \frac{17563432324}{85325517839} a^{9} + \frac{39703377450}{85325517839} a^{7} - \frac{38542470695}{85325517839} a^{5} + \frac{42204429356}{85325517839} a^{3} + \frac{33150985588}{85325517839} a$, $\frac{1}{85325517839} a^{18} - \frac{19998335113}{85325517839} a^{10} + \frac{39702605494}{85325517839} a^{8} - \frac{40265051583}{85325517839} a^{6} + \frac{16460280646}{85325517839} a^{4} + \frac{10483469299}{85325517839} a^{2} - \frac{27845}{148873}$, $\frac{1}{85325517839} a^{19} + \frac{72723}{85325517839} a^{11} - \frac{41604830075}{85325517839} a^{9} - \frac{13084265862}{85325517839} a^{7} + \frac{29454213832}{85325517839} a^{5} - \frac{9872382610}{85325517839} a^{3} - \frac{10327152372}{85325517839} a$
Class group and class number
$C_{2}\times C_{4}\times C_{1072244}$, which has order $8577952$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.2507325789 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-330}) \), \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-165})\), \(\Q(\zeta_{11})^+\), 10.0.58673283984691200000.1, 10.0.1833540124521600000.1, 10.10.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||