Normalized defining polynomial
\( x^{20} + 20 x^{18} + 565 x^{16} + 29472 x^{14} + 869610 x^{12} + 15155944 x^{10} + 170472586 x^{8} + 1270626240 x^{6} + 6120549669 x^{4} + 17367927780 x^{2} + 22163170129 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3525175555633378160676822382018560000000000=2^{40}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(389,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(269,·)$, $\chi_{1320}(211,·)$, $\chi_{1320}(1109,·)$, $\chi_{1320}(1051,·)$, $\chi_{1320}(479,·)$, $\chi_{1320}(359,·)$, $\chi_{1320}(1319,·)$, $\chi_{1320}(509,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(811,·)$, $\chi_{1320}(749,·)$, $\chi_{1320}(239,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(571,·)$, $\chi_{1320}(931,·)$, $\chi_{1320}(959,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{8} - \frac{1}{8} a^{4} - \frac{3}{16}$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{5} - \frac{3}{16} a$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{6} - \frac{3}{16} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{7} - \frac{3}{16} a^{3}$, $\frac{1}{64} a^{12} - \frac{1}{64} a^{8} - \frac{5}{64} a^{4} - \frac{3}{64}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{9} - \frac{5}{64} a^{5} - \frac{3}{64} a$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{10} - \frac{5}{64} a^{6} - \frac{3}{64} a^{2}$, $\frac{1}{64} a^{15} - \frac{1}{64} a^{11} - \frac{5}{64} a^{7} - \frac{3}{64} a^{3}$, $\frac{1}{256} a^{16} - \frac{3}{128} a^{8} - \frac{1}{32} a^{4} - \frac{3}{256}$, $\frac{1}{256} a^{17} - \frac{3}{128} a^{9} - \frac{1}{32} a^{5} - \frac{3}{256} a$, $\frac{1}{18368320056708035522301220096} a^{18} + \frac{3294822432575180717732357}{18368320056708035522301220096} a^{16} + \frac{3776828420365165816257869}{2296040007088504440287652512} a^{14} + \frac{9495797369074024367105015}{4592080014177008880575305024} a^{12} - \frac{169773933600762703576537911}{9184160028354017761150610048} a^{10} - \frac{205248569586050902647228429}{9184160028354017761150610048} a^{8} - \frac{35308771851755250206199125}{1148020003544252220143826256} a^{6} + \frac{467275185353200994784523363}{4592080014177008880575305024} a^{4} - \frac{5970179305688270506660613499}{18368320056708035522301220096} a^{2} - \frac{5841014831145036702541386371}{18368320056708035522301220096}$, $\frac{1}{2734546911802295372311549539351808} a^{19} + \frac{1574259952896382902344460114289}{1367273455901147686155774769675904} a^{17} - \frac{3756959659191946175852797896163}{683636727950573843077887384837952} a^{15} - \frac{1731778679549135400062594802161}{683636727950573843077887384837952} a^{13} + \frac{39851192111598469586676582264899}{1367273455901147686155774769675904} a^{11} + \frac{1058082312686851834369090802505}{341818363975286921538943692418976} a^{9} + \frac{14695447576531901101769018139133}{683636727950573843077887384837952} a^{7} - \frac{31247632703786091010627540316983}{683636727950573843077887384837952} a^{5} + \frac{547111376004795427481482301383137}{2734546911802295372311549539351808} a^{3} - \frac{542356665313685145956499064124261}{1367273455901147686155774769675904} a$
Class group and class number
$C_{2}\times C_{2}\times C_{1198220}$, which has order $4792880$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1589230.0087159988 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{22}, \sqrt{-30})\), \(\Q(\zeta_{11})^+\), 10.0.1833540124521600000.1, 10.10.77265229938688.1, 10.0.5333934907699200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |