Normalized defining polynomial
\( x^{20} - 2 x^{19} + x^{18} + 4 x^{17} + 66 x^{16} - 144 x^{15} + 266 x^{14} - 100 x^{13} + 1822 x^{12} - 3344 x^{11} + 10198 x^{10} - 10362 x^{9} + 36517 x^{8} - 42190 x^{7} + 138157 x^{6} - 145432 x^{5} + 383064 x^{4} - 352162 x^{3} + 765484 x^{2} - 438908 x + 652081 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(352517555563337816067682238201856=2^{30}\cdot 3^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(264=2^{3}\cdot 3\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{264}(1,·)$, $\chi_{264}(83,·)$, $\chi_{264}(67,·)$, $\chi_{264}(65,·)$, $\chi_{264}(17,·)$, $\chi_{264}(131,·)$, $\chi_{264}(235,·)$, $\chi_{264}(25,·)$, $\chi_{264}(233,·)$, $\chi_{264}(97,·)$, $\chi_{264}(35,·)$, $\chi_{264}(163,·)$, $\chi_{264}(227,·)$, $\chi_{264}(161,·)$, $\chi_{264}(107,·)$, $\chi_{264}(49,·)$, $\chi_{264}(91,·)$, $\chi_{264}(115,·)$, $\chi_{264}(41,·)$, $\chi_{264}(169,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{331} a^{18} - \frac{161}{331} a^{17} - \frac{3}{331} a^{16} - \frac{41}{331} a^{15} - \frac{18}{331} a^{14} - \frac{139}{331} a^{13} - \frac{39}{331} a^{12} + \frac{48}{331} a^{11} + \frac{38}{331} a^{10} - \frac{59}{331} a^{9} - \frac{55}{331} a^{8} - \frac{69}{331} a^{7} - \frac{85}{331} a^{6} - \frac{149}{331} a^{5} - \frac{81}{331} a^{4} - \frac{81}{331} a^{3} - \frac{136}{331} a^{2} - \frac{72}{331} a - \frac{37}{331}$, $\frac{1}{7007015472022199661941310962274625726117380347} a^{19} + \frac{3254980906490592870848446017845988261803870}{7007015472022199661941310962274625726117380347} a^{18} + \frac{1284536508620675405542184327755503147399030309}{7007015472022199661941310962274625726117380347} a^{17} + \frac{2143288498257196704110441870661129184665723323}{7007015472022199661941310962274625726117380347} a^{16} - \frac{3482042778550830967268864646949014431646113925}{7007015472022199661941310962274625726117380347} a^{15} - \frac{2410142704827566736630625322389585292036453157}{7007015472022199661941310962274625726117380347} a^{14} + \frac{1523206434981943790900625264115146483402833559}{7007015472022199661941310962274625726117380347} a^{13} + \frac{473600426737310700378708922402956995827044027}{7007015472022199661941310962274625726117380347} a^{12} - \frac{244291982034390146938951122649417667011421841}{7007015472022199661941310962274625726117380347} a^{11} - \frac{1028701951241665496687759601706336226020691096}{7007015472022199661941310962274625726117380347} a^{10} - \frac{722112015143817363482046155806337361207435735}{7007015472022199661941310962274625726117380347} a^{9} + \frac{3497088815981119584672311027240274408938767556}{7007015472022199661941310962274625726117380347} a^{8} - \frac{1323319562591170859559916709945693136045235670}{7007015472022199661941310962274625726117380347} a^{7} - \frac{672108193431791588438606209487126075228230755}{7007015472022199661941310962274625726117380347} a^{6} + \frac{1423343848647379301802656754657842787843880722}{7007015472022199661941310962274625726117380347} a^{5} - \frac{3048769434957004320602960885999748443538984724}{7007015472022199661941310962274625726117380347} a^{4} + \frac{2327971105452456144243196699566006038383345607}{7007015472022199661941310962274625726117380347} a^{3} + \frac{568324175075680340224201789017074048362148988}{7007015472022199661941310962274625726117380347} a^{2} + \frac{2241897412023019724409898108166288732445822919}{7007015472022199661941310962274625726117380347} a + \frac{2253023209322269794467455429786210387151765638}{7007015472022199661941310962274625726117380347}$
Class group and class number
$C_{2}\times C_{310}$, which has order $620$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-66}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), 10.0.18775450875101184.1, \(\Q(\zeta_{33})^+\), 10.0.7024111812608.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |