Properties

Label 20.0.35251755556...1856.2
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 3^{10}\cdot 11^{18}$
Root discriminant $42.40$
Ramified primes $2, 3, 11$
Class number $550$ (GRH)
Class group $[5, 110]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1024, 0, 20480, 0, 99840, 0, 184704, 0, 170560, 0, 89024, 0, 27872, 0, 5328, 0, 608, 0, 38, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 38*x^18 + 608*x^16 + 5328*x^14 + 27872*x^12 + 89024*x^10 + 170560*x^8 + 184704*x^6 + 99840*x^4 + 20480*x^2 + 1024)
 
gp: K = bnfinit(x^20 + 38*x^18 + 608*x^16 + 5328*x^14 + 27872*x^12 + 89024*x^10 + 170560*x^8 + 184704*x^6 + 99840*x^4 + 20480*x^2 + 1024, 1)
 

Normalized defining polynomial

\( x^{20} + 38 x^{18} + 608 x^{16} + 5328 x^{14} + 27872 x^{12} + 89024 x^{10} + 170560 x^{8} + 184704 x^{6} + 99840 x^{4} + 20480 x^{2} + 1024 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(352517555563337816067682238201856=2^{30}\cdot 3^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.40$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(264=2^{3}\cdot 3\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{264}(1,·)$, $\chi_{264}(5,·)$, $\chi_{264}(65,·)$, $\chi_{264}(13,·)$, $\chi_{264}(205,·)$, $\chi_{264}(17,·)$, $\chi_{264}(85,·)$, $\chi_{264}(25,·)$, $\chi_{264}(233,·)$, $\chi_{264}(221,·)$, $\chi_{264}(97,·)$, $\chi_{264}(161,·)$, $\chi_{264}(109,·)$, $\chi_{264}(61,·)$, $\chi_{264}(49,·)$, $\chi_{264}(245,·)$, $\chi_{264}(41,·)$, $\chi_{264}(125,·)$, $\chi_{264}(169,·)$, $\chi_{264}(53,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}\times C_{110}$, which has order $550$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 125582.779517 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{33}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-6}, \sqrt{-22})\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{33})^+\), 10.0.77265229938688.1, 10.0.1706859170463744.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.15.5$x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$$2$$5$$15$$C_{10}$$[3]^{5}$
2.10.15.5$x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$$2$$5$$15$$C_{10}$$[3]^{5}$
3Data not computed
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$