Normalized defining polynomial
\( x^{20} - 8 x^{19} + 40 x^{18} - 123 x^{17} + 384 x^{16} - 999 x^{15} + 3004 x^{14} - 4808 x^{13} + 15643 x^{12} - 57768 x^{11} + 122352 x^{10} + 32265 x^{9} + 387883 x^{8} - 2403755 x^{7} + 270769 x^{6} + 3283896 x^{5} + 15232524 x^{4} - 19717650 x^{3} - 19671525 x^{2} - 14233725 x + 91872225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(350664337162127669847494428212890625=3^{10}\cdot 5^{10}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{45} a^{10} + \frac{1}{15} a^{6} + \frac{1}{9} a^{4} - \frac{1}{5} a^{2}$, $\frac{1}{45} a^{11} + \frac{1}{15} a^{7} + \frac{1}{9} a^{5} - \frac{1}{5} a^{3}$, $\frac{1}{135} a^{12} - \frac{1}{135} a^{10} - \frac{4}{45} a^{8} + \frac{2}{135} a^{6} - \frac{59}{135} a^{4} + \frac{1}{3} a^{3} - \frac{22}{45} a^{2} - \frac{1}{3} a$, $\frac{1}{135} a^{13} - \frac{1}{135} a^{11} + \frac{1}{45} a^{9} + \frac{2}{135} a^{7} + \frac{31}{135} a^{5} + \frac{1}{3} a^{4} + \frac{2}{5} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{405} a^{14} + \frac{1}{405} a^{13} - \frac{1}{405} a^{12} - \frac{1}{405} a^{11} - \frac{1}{135} a^{10} - \frac{4}{135} a^{9} + \frac{2}{405} a^{8} + \frac{2}{405} a^{7} - \frac{32}{405} a^{6} + \frac{121}{405} a^{5} - \frac{37}{135} a^{4} + \frac{53}{135} a^{3} - \frac{14}{45} a^{2} - \frac{1}{3} a$, $\frac{1}{4860} a^{15} - \frac{1}{810} a^{14} + \frac{4}{1215} a^{13} + \frac{1}{810} a^{12} + \frac{13}{1215} a^{11} - \frac{1}{270} a^{10} - \frac{28}{1215} a^{9} - \frac{46}{405} a^{8} - \frac{457}{4860} a^{7} - \frac{91}{810} a^{6} + \frac{1153}{2430} a^{5} - \frac{49}{135} a^{4} + \frac{613}{1620} a^{3} - \frac{11}{27} a^{2} - \frac{5}{12} a + \frac{1}{4}$, $\frac{1}{24300} a^{16} - \frac{1}{24300} a^{15} - \frac{1}{12150} a^{14} + \frac{13}{12150} a^{13} + \frac{17}{12150} a^{12} - \frac{119}{12150} a^{11} + \frac{7}{12150} a^{10} - \frac{98}{6075} a^{9} + \frac{3719}{24300} a^{8} + \frac{289}{24300} a^{7} + \frac{752}{6075} a^{6} - \frac{3337}{12150} a^{5} - \frac{1703}{8100} a^{4} - \frac{479}{1620} a^{3} + \frac{143}{540} a^{2} - \frac{1}{6} a + \frac{1}{4}$, $\frac{1}{801900} a^{17} - \frac{1}{133650} a^{16} - \frac{19}{267300} a^{15} - \frac{17}{66825} a^{14} - \frac{46}{22275} a^{13} - \frac{119}{66825} a^{12} - \frac{79}{18225} a^{11} + \frac{883}{133650} a^{10} + \frac{8333}{267300} a^{9} - \frac{8711}{133650} a^{8} - \frac{637}{9900} a^{7} + \frac{371}{12150} a^{6} - \frac{5809}{72900} a^{5} - \frac{139}{1485} a^{4} + \frac{1021}{13365} a^{3} - \frac{5761}{17820} a^{2} - \frac{19}{396} a - \frac{61}{132}$, $\frac{1}{2405700} a^{18} - \frac{1}{2405700} a^{17} + \frac{1}{200475} a^{16} + \frac{2}{66825} a^{15} - \frac{149}{400950} a^{14} - \frac{1409}{400950} a^{13} + \frac{53}{48114} a^{12} + \frac{2639}{601425} a^{11} - \frac{29}{10692} a^{10} + \frac{4487}{801900} a^{9} - \frac{28741}{400950} a^{8} - \frac{21914}{200475} a^{7} - \frac{20347}{218700} a^{6} + \frac{1167599}{2405700} a^{5} - \frac{342577}{801900} a^{4} + \frac{5891}{40095} a^{3} + \frac{1625}{10692} a^{2} - \frac{86}{297} a - \frac{37}{198}$, $\frac{1}{873640951783166045376671750376964292470500} a^{19} + \frac{37401091573918929216435695498385202}{218410237945791511344167937594241073117625} a^{18} - \frac{124235722864308836875478365221551581}{436820475891583022688335875188482146235250} a^{17} - \frac{43954877467153323269276537372172863}{14560682529719434089611195839616071541175} a^{16} - \frac{13973593381315166575156619278561292861}{145606825297194340896111958396160715411750} a^{15} + \frac{2782381452384289646265821139644732989}{3235707228826540908802487964359127009150} a^{14} + \frac{84407995621298702983098842863354107886}{218410237945791511344167937594241073117625} a^{13} + \frac{44858126363636293034241684513117702739}{218410237945791511344167937594241073117625} a^{12} + \frac{4627174999535285459519267521014760844479}{873640951783166045376671750376964292470500} a^{11} - \frac{372861474814969023618371683400668501777}{72803412648597170448055979198080357705875} a^{10} - \frac{2674547037580968481909982530944125842876}{72803412648597170448055979198080357705875} a^{9} + \frac{133734753034229148125739414971724496201}{4412328039308919421094301769580627739750} a^{8} + \frac{82090195350517646312383340290945771384681}{873640951783166045376671750376964292470500} a^{7} + \frac{43999693683889612349647409545553370307313}{436820475891583022688335875188482146235250} a^{6} + \frac{77547101845541049838257680964549897701057}{174728190356633209075334350075392858494100} a^{5} - \frac{76635027368468894671294650531926662615663}{291213650594388681792223916792321430823500} a^{4} - \frac{576985465370596998184034644241239864243}{1164854602377554727168895667169285723294} a^{3} + \frac{21707646232239549279456178470383888}{88246560786178388421886035391612554795} a^{2} + \frac{4989975974421038999684146516213862572}{21571381525510272725349919762394180061} a - \frac{110644954279481226089055126413713939}{1012740916690623132645536139079538970}$
Class group and class number
$C_{10}\times C_{150}$, which has order $1500$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 573613254.833 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 239 | Data not computed | ||||||