Normalized defining polynomial
\( x^{20} - x^{19} + 28 x^{18} - 2 x^{17} + 132 x^{16} + 925 x^{15} + 4597 x^{14} + 4515 x^{13} + 53419 x^{12} + 165614 x^{11} + 741564 x^{10} + 1419624 x^{9} + 3626130 x^{8} + 14990118 x^{7} + 31657670 x^{6} + 43648056 x^{5} + 60299602 x^{4} + 94712168 x^{3} + 696443374 x^{2} + 330515948 x + 42152299 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(349573275653036803400564234462890625=5^{10}\cdot 11^{9}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} - \frac{3}{7} a^{14} + \frac{1}{7} a^{13} - \frac{1}{7} a^{12} + \frac{3}{7} a^{11} - \frac{2}{7} a^{10} - \frac{2}{7} a^{9} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{7} a^{16} - \frac{1}{7} a^{14} + \frac{2}{7} a^{13} - \frac{1}{7} a^{10} + \frac{1}{7} a^{9} - \frac{2}{7} a^{8} - \frac{3}{7} a^{7} - \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} + \frac{1}{7} a^{2} - \frac{2}{7} a$, $\frac{1}{7} a^{17} - \frac{1}{7} a^{14} + \frac{1}{7} a^{13} - \frac{1}{7} a^{12} + \frac{2}{7} a^{11} - \frac{1}{7} a^{10} + \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{119} a^{18} + \frac{5}{119} a^{17} - \frac{3}{119} a^{15} - \frac{5}{119} a^{14} - \frac{19}{119} a^{13} + \frac{13}{119} a^{12} + \frac{1}{7} a^{11} + \frac{16}{119} a^{10} - \frac{40}{119} a^{9} - \frac{39}{119} a^{8} - \frac{2}{7} a^{7} - \frac{37}{119} a^{6} + \frac{10}{119} a^{5} + \frac{11}{119} a^{4} + \frac{59}{119} a^{3} + \frac{12}{119} a^{2} + \frac{33}{119} a$, $\frac{1}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{19} - \frac{339454672887835031859553367711791383929118474026374548641628284393241949167248903}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{18} + \frac{4966713749920538796456274309721508379549400748802743737026204061561115174126374932}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{17} + \frac{9055722894660398242007794292942371722352872884438176310332115099317002519951199279}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{16} + \frac{3780154829273123946135670965028259214731301021307332654148117711462641049398409730}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{15} - \frac{47872628207816528335631494811357359445975283596868823872319712750185748583075099285}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{14} - \frac{34790715904979082464770134953733843227971115708048189931325232735580367060899569363}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{13} + \frac{84384166180082854579064592241120836916366678147916618897708052136731203487047454280}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{12} - \frac{663749237571928774826451491153480325462185842636339541621814296718235264594573931}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{11} - \frac{14442329894732662443149660236786824411424634352500977003470213312732175936674018475}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{10} - \frac{11537265446793043244183765232546932197636311924218041906157172705997017861754934347}{25408789725209269342872392912915058766896613193186077102606907524700499869976493199} a^{9} + \frac{4175928433737196607440824125544184126878649576026822752172982448394874455149216751}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{8} + \frac{69061291729379344539313999329837789981791375611997401733057022159304174851206514479}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{7} + \frac{52003928947501660058515226163816996797650901846856241476820933097473838641816672413}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{6} + \frac{30242023548908691622961711605835474898759121747938100477110825081297346597341779609}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{5} + \frac{6950324422200538035035412070813634599244077094376092163815598716458943695176205351}{25408789725209269342872392912915058766896613193186077102606907524700499869976493199} a^{4} - \frac{53739339195765136496089033318033719898131685442471342640344224833097498604445044923}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{3} + \frac{35867479196282244908578497601834431422200175099362352753335638425025750037323387800}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a^{2} - \frac{3991131677466146157768771507191909445332239754932866608456387146197938722162729327}{177861528076464885400106750390405411368276292352302539718248352672903499089835452393} a + \frac{359984439301674626856853860663144996904657063607057071182069187398870604632390492}{1494634689718192314286611347818532868640977246658004535447465148511794109998617247}$
Class group and class number
$C_{2}\times C_{22}$, which has order $44$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 355564701.5857714 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 4.0.1886225.3, 10.0.36252565459.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $20$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 11.10.9.4 | $x^{10} - 99$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 19 | Data not computed | ||||||