Normalized defining polynomial
\( x^{20} - 10 x^{19} - 15 x^{18} + 420 x^{17} + 495 x^{16} - 14772 x^{15} + 4060 x^{14} + 269870 x^{13} + 28580 x^{12} - 4500870 x^{11} + 1816046 x^{10} + 40780300 x^{9} + 26828720 x^{8} - 416447300 x^{7} + 64802725 x^{6} + 1499675750 x^{5} + 5527504125 x^{4} - 14154588750 x^{3} + 6443371875 x^{2} + 970468750 x + 316393965625 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(349063387514017843536891023700797440000000000=2^{20}\cdot 5^{10}\cdot 11^{18}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $168.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4180=2^{2}\cdot 5\cdot 11\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4180}(1,·)$, $\chi_{4180}(3079,·)$, $\chi_{4180}(1101,·)$, $\chi_{4180}(4141,·)$, $\chi_{4180}(4179,·)$, $\chi_{4180}(1559,·)$, $\chi_{4180}(1179,·)$, $\chi_{4180}(2279,·)$, $\chi_{4180}(3041,·)$, $\chi_{4180}(2659,·)$, $\chi_{4180}(39,·)$, $\chi_{4180}(2281,·)$, $\chi_{4180}(1899,·)$, $\chi_{4180}(1901,·)$, $\chi_{4180}(1521,·)$, $\chi_{4180}(1139,·)$, $\chi_{4180}(3381,·)$, $\chi_{4180}(3001,·)$, $\chi_{4180}(799,·)$, $\chi_{4180}(2621,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{6} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{1}{25} a^{6} + \frac{1}{25} a^{5} + \frac{1}{25} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{25} a^{9} - \frac{1}{25} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{10} - \frac{1}{25} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{11} - \frac{1}{25} a^{6} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{125} a^{12} - \frac{1}{125} a^{11} + \frac{4}{125} a^{7} + \frac{6}{125} a^{6} - \frac{2}{25} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{125} a^{13} - \frac{1}{125} a^{11} - \frac{1}{125} a^{8} + \frac{1}{25} a^{7} + \frac{1}{125} a^{6} + \frac{2}{25} a^{5} + \frac{2}{25} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{125} a^{14} - \frac{1}{125} a^{11} - \frac{1}{125} a^{9} + \frac{11}{125} a^{6} + \frac{1}{25} a^{5} + \frac{2}{25} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{125} a^{15} - \frac{1}{125} a^{11} - \frac{1}{125} a^{10} - \frac{2}{25} a^{7} + \frac{11}{125} a^{6} + \frac{2}{25} a^{5} - \frac{2}{25} a^{4}$, $\frac{1}{625} a^{16} + \frac{2}{625} a^{15} - \frac{2}{625} a^{14} - \frac{1}{625} a^{13} + \frac{4}{625} a^{11} - \frac{7}{625} a^{10} - \frac{3}{625} a^{9} - \frac{4}{625} a^{8} - \frac{11}{125} a^{7} - \frac{12}{125} a^{6} - \frac{2}{25} a^{5} + \frac{2}{25} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{14375} a^{17} + \frac{3}{14375} a^{16} + \frac{2}{2875} a^{15} - \frac{43}{14375} a^{14} + \frac{29}{14375} a^{13} - \frac{6}{14375} a^{12} - \frac{193}{14375} a^{11} + \frac{6}{2875} a^{10} + \frac{133}{14375} a^{9} - \frac{264}{14375} a^{8} - \frac{181}{2875} a^{7} - \frac{214}{2875} a^{6} + \frac{54}{575} a^{5} + \frac{42}{575} a^{4} - \frac{2}{5} a^{3} + \frac{6}{23} a^{2} + \frac{3}{23} a$, $\frac{1}{6404930524829445714402480302350625} a^{18} - \frac{9}{6404930524829445714402480302350625} a^{17} - \frac{151374005250270264835407406599}{256197220993177828576099212094025} a^{16} - \frac{20964643148581512748138361098801}{6404930524829445714402480302350625} a^{15} + \frac{18628076360291941112367952953123}{6404930524829445714402480302350625} a^{14} + \frac{1181444336854567917471271534364}{1280986104965889142880496060470125} a^{13} + \frac{5343704473035396735047717432814}{6404930524829445714402480302350625} a^{12} + \frac{156765430391447136532577513217}{11139009608399036025047791830175} a^{11} - \frac{80670232429808310590451021143094}{6404930524829445714402480302350625} a^{10} - \frac{38393413264709674672730714515018}{6404930524829445714402480302350625} a^{9} - \frac{70686954748659071766704391823766}{6404930524829445714402480302350625} a^{8} + \frac{15443289071941120277513296974746}{256197220993177828576099212094025} a^{7} - \frac{31031528159821956325650457938424}{1280986104965889142880496060470125} a^{6} + \frac{3159643446390397634176857626538}{256197220993177828576099212094025} a^{5} + \frac{3255921837283108419048182509791}{256197220993177828576099212094025} a^{4} - \frac{9592045435549525463652694218573}{51239444198635565715219842418805} a^{3} + \frac{4436594340067155368673641362}{445560384335961441001911673207} a^{2} + \frac{1341434218310883989359364192394}{10247888839727113143043968483761} a + \frac{38295508466738966740010801390}{445560384335961441001911673207}$, $\frac{1}{160580274128474298300121767735779249145625} a^{19} + \frac{545029}{6981751049064099926092250771120836919375} a^{18} - \frac{3563312361864713190413433231783412407}{160580274128474298300121767735779249145625} a^{17} - \frac{17151233932317177320135642401525704138}{160580274128474298300121767735779249145625} a^{16} + \frac{345053097030138907564853310785234456861}{160580274128474298300121767735779249145625} a^{15} - \frac{113782449683091463445999180822965943412}{160580274128474298300121767735779249145625} a^{14} - \frac{119166174616693109833189950693089514848}{32116054825694859660024353547155849829125} a^{13} + \frac{285434304301326808782453076729438948177}{160580274128474298300121767735779249145625} a^{12} + \frac{1239687984665056795881451272880677641798}{160580274128474298300121767735779249145625} a^{11} - \frac{63861033106170127325833093255638822622}{6981751049064099926092250771120836919375} a^{10} + \frac{1890269674309168045946324232492637817941}{160580274128474298300121767735779249145625} a^{9} + \frac{2793046989426765697135001402340197012328}{160580274128474298300121767735779249145625} a^{8} - \frac{3192834222022306186425141964930151658053}{32116054825694859660024353547155849829125} a^{7} - \frac{2924219804349159371195834460037996911716}{32116054825694859660024353547155849829125} a^{6} + \frac{7080755028124130866220227914987295037}{6423210965138971932004870709431169965825} a^{5} + \frac{261737265121114935524773025678936441696}{6423210965138971932004870709431169965825} a^{4} - \frac{290998825664513950704022648308443758117}{1284642193027794386400974141886233993165} a^{3} + \frac{50167148110746693699108698174204686853}{256928438605558877280194828377246798633} a^{2} - \frac{86884604346271044341946548578047344151}{256928438605558877280194828377246798633} a - \frac{2363298209738324558853700762930296691}{11170801678502559881747601233793339071}$
Class group and class number
$C_{2}\times C_{2}\times C_{3144020}$, which has order $12576080$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11184526.893275889 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-1045}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-19}, \sqrt{55})\), \(\Q(\zeta_{11})^+\), 10.0.18683238143159708800000.1, 10.10.7545432611200000.1, 10.0.530773810885219.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $19$ | 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 19.10.5.2 | $x^{10} - 130321 x^{2} + 12380495$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |