Normalized defining polynomial
\( x^{20} - 2 x^{19} + 81 x^{18} - 140 x^{17} + 3338 x^{16} - 5136 x^{15} + 89802 x^{14} - 123108 x^{13} + 1723054 x^{12} - 2091920 x^{11} + 24460118 x^{10} - 25909114 x^{9} + 258929781 x^{8} - 232860430 x^{7} + 2012905741 x^{6} - 1464272744 x^{5} + 10981722576 x^{4} - 5857664802 x^{3} + 37904480108 x^{2} - 11369175884 x + 62528029201 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3442554253548220860035959357440000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(899,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(1219,·)$, $\chi_{1320}(659,·)$, $\chi_{1320}(761,·)$, $\chi_{1320}(281,·)$, $\chi_{1320}(859,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(1121,·)$, $\chi_{1320}(1019,·)$, $\chi_{1320}(161,·)$, $\chi_{1320}(299,·)$, $\chi_{1320}(619,·)$, $\chi_{1320}(1139,·)$, $\chi_{1320}(499,·)$, $\chi_{1320}(41,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{263} a^{18} - \frac{107}{263} a^{17} + \frac{68}{263} a^{16} - \frac{131}{263} a^{15} - \frac{62}{263} a^{14} - \frac{42}{263} a^{13} - \frac{42}{263} a^{12} - \frac{17}{263} a^{11} - \frac{110}{263} a^{10} - \frac{25}{263} a^{9} - \frac{74}{263} a^{8} + \frac{1}{263} a^{7} + \frac{84}{263} a^{6} - \frac{47}{263} a^{5} + \frac{64}{263} a^{4} - \frac{112}{263} a^{3} - \frac{77}{263} a^{2} + \frac{6}{263} a + \frac{67}{263}$, $\frac{1}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{19} + \frac{176767269186873235449705942682477153769471734051990207450772872499207}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{18} - \frac{235699703732917081710816201895141217314989581463365998127026181976839693}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{17} - \frac{236256811864128626566090578961011658418718731182186728045136694128834113}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{16} + \frac{44944207201425713528682959522587807073639033000432989862491493574341790}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{15} - \frac{116141043784796509103773239251644687725179818709748724328175838160484602}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{14} - \frac{85282284158753861440563056553474400591727773603816427398780597103106181}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{13} - \frac{211887055984929126939933237430011242761979541842923026693303443292169386}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{12} - \frac{230357722529584659150593016798918026610206341866784243937727237435318469}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{11} - \frac{44798669930115842313645370302490422104991251710963307708370009726845672}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{10} + \frac{27869606047391885365081537456318228937569270953742349923922284339778737}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{9} + \frac{248592681871711608444295792413129550110537645607852205766110395699173881}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{8} + \frac{33872229346077932695036362783253343004834359014797115553111260883875232}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{7} - \frac{221830416541523940755175237332789169624303571786333219826476504014333927}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{6} - \frac{34554734000550014900343500924811629813176299530883133639972854207222158}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{5} - \frac{189217803060538878358042511466911468357122172158672282829034575424104100}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{4} + \frac{187038009823607816425367752837082608631894561840282308802649872501627248}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{3} - \frac{129565823472505751435165143862568355631321053978159835340350120974513901}{520429170565427120431105019742080474075969942098346131948294671883940111} a^{2} - \frac{29941134312005119906681227606731691789438785524044818885245288607828906}{520429170565427120431105019742080474075969942098346131948294671883940111} a - \frac{178866062326700216437060938744019663415103021092869018431144983913234551}{520429170565427120431105019742080474075969942098346131948294671883940111}$
Class group and class number
$C_{2}\times C_{2}\times C_{459110}$, which has order $1836440$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-330}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-10}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), 10.0.58673283984691200000.1, \(\Q(\zeta_{33})^+\), 10.0.21950349414400000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |