Normalized defining polynomial
\( x^{20} - 10 x^{19} + 167 x^{18} - 1218 x^{17} + 11313 x^{16} - 64188 x^{15} + 419322 x^{14} - 1902132 x^{13} + 9461145 x^{12} - 34625998 x^{11} + 135278353 x^{10} - 397588862 x^{9} + 1230518499 x^{8} - 2851812468 x^{7} + 6947616282 x^{6} - 12219263196 x^{5} + 23152394787 x^{4} - 28627012626 x^{3} + 42002721191 x^{2} - 29346150362 x + 48162813931 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3442554253548220860035959357440000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(899,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(371,·)$, $\chi_{1320}(529,·)$, $\chi_{1320}(1091,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(491,·)$, $\chi_{1320}(289,·)$, $\chi_{1320}(611,·)$, $\chi_{1320}(131,·)$, $\chi_{1320}(169,·)$, $\chi_{1320}(299,·)$, $\chi_{1320}(49,·)$, $\chi_{1320}(659,·)$, $\chi_{1320}(1139,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(889,·)$, $\chi_{1320}(1019,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{6} + \frac{1}{3} a^{3} - \frac{1}{6}$, $\frac{1}{6} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{36} a^{8} + \frac{1}{18} a^{7} + \frac{1}{18} a^{6} + \frac{1}{18} a^{5} + \frac{1}{36} a^{4} - \frac{1}{18} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a - \frac{17}{36}$, $\frac{1}{36} a^{9} - \frac{1}{18} a^{7} - \frac{1}{18} a^{6} - \frac{1}{12} a^{5} + \frac{1}{18} a^{4} + \frac{1}{6} a^{2} + \frac{11}{36} a + \frac{1}{9}$, $\frac{1}{36} a^{10} + \frac{1}{18} a^{7} + \frac{1}{36} a^{6} + \frac{1}{18} a^{4} - \frac{1}{9} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a - \frac{5}{18}$, $\frac{1}{36} a^{11} - \frac{1}{12} a^{7} + \frac{1}{18} a^{6} - \frac{1}{18} a^{5} - \frac{5}{36} a^{3} + \frac{2}{9} a^{2} - \frac{1}{2} a - \frac{1}{18}$, $\frac{1}{216} a^{12} - \frac{1}{72} a^{10} - \frac{1}{108} a^{9} + \frac{17}{216} a^{6} - \frac{1}{12} a^{5} - \frac{1}{18} a^{4} + \frac{7}{27} a^{3} + \frac{1}{24} a^{2} - \frac{7}{36} a - \frac{17}{216}$, $\frac{1}{216} a^{13} - \frac{1}{72} a^{11} - \frac{1}{108} a^{10} + \frac{17}{216} a^{7} - \frac{1}{12} a^{6} - \frac{1}{18} a^{5} - \frac{2}{27} a^{4} - \frac{7}{24} a^{3} + \frac{5}{36} a^{2} + \frac{55}{216} a - \frac{1}{3}$, $\frac{1}{216} a^{14} - \frac{1}{108} a^{11} - \frac{1}{72} a^{10} - \frac{1}{216} a^{8} - \frac{1}{12} a^{7} - \frac{1}{72} a^{6} - \frac{2}{27} a^{5} + \frac{5}{72} a^{4} + \frac{5}{36} a^{3} + \frac{25}{54} a^{2} - \frac{4}{9} a + \frac{13}{72}$, $\frac{1}{216} a^{15} - \frac{1}{72} a^{11} + \frac{1}{216} a^{9} - \frac{1}{72} a^{7} + \frac{1}{18} a^{6} - \frac{1}{72} a^{5} + \frac{1}{18} a^{4} + \frac{1}{27} a^{3} + \frac{1}{18} a^{2} - \frac{17}{72} a - \frac{11}{27}$, $\frac{1}{1296} a^{16} - \frac{1}{648} a^{15} + \frac{1}{648} a^{14} + \frac{1}{648} a^{12} + \frac{1}{648} a^{11} - \frac{7}{648} a^{10} - \frac{1}{216} a^{9} + \frac{1}{1296} a^{8} - \frac{1}{216} a^{7} - \frac{7}{648} a^{6} + \frac{17}{648} a^{5} - \frac{1}{81} a^{4} + \frac{25}{108} a^{3} + \frac{26}{81} a^{2} + \frac{157}{648} a + \frac{607}{1296}$, $\frac{1}{55728} a^{17} + \frac{13}{55728} a^{16} - \frac{31}{13932} a^{15} - \frac{1}{3096} a^{14} + \frac{37}{27864} a^{13} + \frac{61}{27864} a^{12} - \frac{143}{13932} a^{11} - \frac{7}{1032} a^{10} + \frac{283}{55728} a^{9} - \frac{197}{18576} a^{8} + \frac{973}{13932} a^{7} - \frac{745}{27864} a^{6} - \frac{1331}{27864} a^{5} + \frac{41}{4644} a^{4} - \frac{481}{3483} a^{3} + \frac{1472}{3483} a^{2} + \frac{7873}{55728} a + \frac{3565}{18576}$, $\frac{1}{174532391250303472425689381136} a^{18} - \frac{1}{19392487916700385825076597904} a^{17} - \frac{1845214995151469316869603}{58177463750101157475229793712} a^{16} + \frac{1230143330100979544579741}{4848121979175096456269149476} a^{15} + \frac{41775765066452035027620841}{29088731875050578737614896856} a^{14} - \frac{732718341437877472991237}{1212030494793774114067287369} a^{13} + \frac{35191877853160836426342653}{29088731875050578737614896856} a^{12} + \frac{353285984527220168685479761}{29088731875050578737614896856} a^{11} + \frac{448571557053639847063659145}{58177463750101157475229793712} a^{10} + \frac{2409608105063518704809325473}{174532391250303472425689381136} a^{9} - \frac{218944846570566545167359689}{58177463750101157475229793712} a^{8} + \frac{174099110764193092654999427}{9696243958350192912538298952} a^{7} - \frac{2333967754044400681958031677}{29088731875050578737614896856} a^{6} - \frac{13570282859948166090205693}{266869099771106226950595384} a^{5} - \frac{482812992895874361020493911}{29088731875050578737614896856} a^{4} - \frac{3429311032980771002704158239}{9696243958350192912538298952} a^{3} + \frac{15621203203091284474638136751}{58177463750101157475229793712} a^{2} - \frac{25730046047897411259699381733}{58177463750101157475229793712} a - \frac{58038645782216457735164403913}{174532391250303472425689381136}$, $\frac{1}{847393680243472176301072874147273328} a^{19} + \frac{1213801}{423696840121736088150536437073636664} a^{18} - \frac{6138739552623857539721314489325}{847393680243472176301072874147273328} a^{17} - \frac{144092841698654952617926894129525}{423696840121736088150536437073636664} a^{16} - \frac{250899484353084053745393806169985}{211848420060868044075268218536818332} a^{15} - \frac{12539508957200122439291428993778}{17654035005072337006272351544734861} a^{14} + \frac{407149620215429619796736045098921}{423696840121736088150536437073636664} a^{13} - \frac{17441043203847129247127951546731}{211848420060868044075268218536818332} a^{12} - \frac{7288158826170128338195608354349067}{847393680243472176301072874147273328} a^{11} - \frac{271946683579450305735213807454655}{423696840121736088150536437073636664} a^{10} + \frac{10164534351926465919386095787845715}{847393680243472176301072874147273328} a^{9} + \frac{271481156161868229042077468985257}{47077426680192898683392937452626296} a^{8} - \frac{8949390710241189095722460480353997}{211848420060868044075268218536818332} a^{7} - \frac{770679964410654539550992180154269}{52962105015217011018817054634204583} a^{6} - \frac{2025736132520789275888339714954559}{105924210030434022037634109268409166} a^{5} + \frac{169786591907528612183194984734595}{7846237780032149780565489575437716} a^{4} + \frac{217358425415279293210757418442269137}{847393680243472176301072874147273328} a^{3} - \frac{187740331816701449296648452057242627}{423696840121736088150536437073636664} a^{2} - \frac{46344417320077873693833626193358789}{282464560081157392100357624715757776} a + \frac{186278378485262462811144908494431107}{423696840121736088150536437073636664}$
Class group and class number
$C_{2}\times C_{2}\times C_{367288}$, which has order $1469152$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-66}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-330}) \), \(\Q(\sqrt{5}, \sqrt{-66})\), \(\Q(\zeta_{11})^+\), 10.0.18775450875101184.1, 10.10.669871503125.1, 10.0.58673283984691200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |