Normalized defining polynomial
\( x^{20} + 130 x^{18} + 6340 x^{16} + 162528 x^{14} + 2490240 x^{12} + 24136256 x^{10} + 150756736 x^{8} + 599886720 x^{6} + 1450009344 x^{4} + 1901621760 x^{2} + 1001595904 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3442554253548220860035959357440000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(389,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(1289,·)$, $\chi_{1320}(269,·)$, $\chi_{1320}(1261,·)$, $\chi_{1320}(1109,·)$, $\chi_{1320}(569,·)$, $\chi_{1320}(541,·)$, $\chi_{1320}(329,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(809,·)$, $\chi_{1320}(749,·)$, $\chi_{1320}(509,·)$, $\chi_{1320}(689,·)$, $\chi_{1320}(1141,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(901,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{2944} a^{15} + \frac{3}{1472} a^{13} - \frac{5}{368} a^{11} + \frac{11}{368} a^{9} - \frac{1}{92} a^{7} + \frac{2}{23} a^{5} + \frac{5}{46} a^{3} + \frac{7}{23} a$, $\frac{1}{5888} a^{16} + \frac{3}{2944} a^{14} - \frac{5}{736} a^{12} + \frac{11}{736} a^{10} - \frac{1}{184} a^{8} + \frac{1}{23} a^{6} + \frac{5}{92} a^{4} + \frac{7}{46} a^{2}$, $\frac{1}{253184} a^{17} + \frac{21}{126592} a^{15} + \frac{137}{31648} a^{13} + \frac{11}{1978} a^{11} + \frac{449}{15824} a^{9} + \frac{363}{7912} a^{7} + \frac{201}{1978} a^{5} - \frac{271}{1978} a^{3} + \frac{195}{989} a$, $\frac{1}{15565212171382050304} a^{18} - \frac{45696076370135}{3891303042845512576} a^{16} + \frac{1651406053490223}{972825760711378144} a^{14} + \frac{14048158681896141}{1945651521422756288} a^{12} - \frac{842765969384213}{60801610044461134} a^{10} + \frac{1236093743153805}{60801610044461134} a^{8} - \frac{3285819772110685}{243206440177844536} a^{6} - \frac{2722750037316641}{30400805022230567} a^{4} - \frac{6071027277961743}{30400805022230567} a^{2} + \frac{3717939243031}{30738933288403}$, $\frac{1}{15565212171382050304} a^{19} + \frac{824647124939}{7782606085691025152} a^{17} + \frac{611532222722307}{3891303042845512576} a^{15} - \frac{7438588771245541}{972825760711378144} a^{13} - \frac{9150065916482585}{972825760711378144} a^{11} - \frac{2771097282773933}{243206440177844536} a^{9} - \frac{3687860472171251}{60801610044461134} a^{7} - \frac{6864199888485771}{121603220088922268} a^{5} + \frac{7208191902628353}{30400805022230567} a^{3} - \frac{3454390611551837}{30400805022230567} a$
Class group and class number
$C_{2}\times C_{72820}$, which has order $145640$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5362955.97373 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{165}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-22}, \sqrt{-30})\), \(\Q(\zeta_{11})^+\), 10.10.1790566527853125.1, 10.0.5333934907699200000.1, 10.0.77265229938688.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |