Normalized defining polynomial
\( x^{20} - 10 x^{19} + 41 x^{18} - 84 x^{17} + 368 x^{16} - 2332 x^{15} + 8274 x^{14} - 17312 x^{13} + 56457 x^{12} - 220234 x^{11} + 628957 x^{10} - 1258764 x^{9} + 3679294 x^{8} - 9383840 x^{7} + 21822312 x^{6} - 35695792 x^{5} + 96711800 x^{4} - 143467744 x^{3} + 285885936 x^{2} - 218747328 x + 762871264 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3442554253548220860035959357440000000000=2^{30}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1320=2^{3}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1320}(1,·)$, $\chi_{1320}(899,·)$, $\chi_{1320}(211,·)$, $\chi_{1320}(961,·)$, $\chi_{1320}(841,·)$, $\chi_{1320}(1169,·)$, $\chi_{1320}(659,·)$, $\chi_{1320}(1049,·)$, $\chi_{1320}(89,·)$, $\chi_{1320}(1051,·)$, $\chi_{1320}(571,·)$, $\chi_{1320}(929,·)$, $\chi_{1320}(931,·)$, $\chi_{1320}(361,·)$, $\chi_{1320}(811,·)$, $\chi_{1320}(449,·)$, $\chi_{1320}(1139,·)$, $\chi_{1320}(1081,·)$, $\chi_{1320}(1019,·)$, $\chi_{1320}(299,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{8} + \frac{1}{8} a^{6}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{6}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{7}$, $\frac{1}{688} a^{16} - \frac{1}{86} a^{15} + \frac{1}{86} a^{14} - \frac{1}{344} a^{13} + \frac{5}{344} a^{12} - \frac{27}{344} a^{11} + \frac{5}{172} a^{10} - \frac{9}{344} a^{9} - \frac{35}{688} a^{8} - \frac{81}{344} a^{7} + \frac{7}{172} a^{6} - \frac{17}{172} a^{5} + \frac{10}{43} a^{4} - \frac{27}{86} a^{3} - \frac{15}{43} a^{2} - \frac{7}{43} a - \frac{16}{43}$, $\frac{1}{688} a^{17} + \frac{15}{344} a^{15} - \frac{3}{86} a^{14} - \frac{3}{344} a^{13} + \frac{13}{344} a^{12} - \frac{17}{172} a^{11} - \frac{15}{344} a^{10} - \frac{7}{688} a^{9} + \frac{37}{344} a^{8} + \frac{11}{344} a^{7} + \frac{35}{344} a^{6} + \frac{33}{172} a^{5} - \frac{35}{172} a^{4} - \frac{31}{86} a^{3} - \frac{39}{86} a^{2} + \frac{14}{43} a + \frac{1}{43}$, $\frac{1}{338269495001706265316863792} a^{18} - \frac{9}{338269495001706265316863792} a^{17} + \frac{195502883023995830638609}{338269495001706265316863792} a^{16} - \frac{391005766047991661277167}{84567373750426566329215948} a^{15} + \frac{9825460851850971534096015}{169134747500853132658431896} a^{14} + \frac{1041563270192854019117543}{21141843437606641582303987} a^{13} + \frac{96176218258611690936575}{84567373750426566329215948} a^{12} - \frac{18207158803887549961860321}{169134747500853132658431896} a^{11} - \frac{25065404024718428061305561}{338269495001706265316863792} a^{10} - \frac{14405031502383831675633619}{338269495001706265316863792} a^{9} - \frac{17315160566981531065469625}{338269495001706265316863792} a^{8} - \frac{26564529790511440721970149}{169134747500853132658431896} a^{7} - \frac{27746998925499177214988091}{169134747500853132658431896} a^{6} - \frac{3170127383205331990515017}{84567373750426566329215948} a^{5} - \frac{19089167995290381561637513}{84567373750426566329215948} a^{4} - \frac{1104004225684383721063019}{42283686875213283164607974} a^{3} - \frac{4976535174509816597999462}{21141843437606641582303987} a^{2} + \frac{357195970320922969058678}{21141843437606641582303987} a + \frac{8168576523610084290415535}{21141843437606641582303987}$, $\frac{1}{9244371847403014540329482741160016} a^{19} + \frac{6832101}{4622185923701507270164741370580008} a^{18} - \frac{5316103061772311295378752609797}{9244371847403014540329482741160016} a^{17} + \frac{51888394456184313629756568076}{577773240462688408770592671322501} a^{16} + \frac{287024108053151950260147136456293}{4622185923701507270164741370580008} a^{15} - \frac{43039570242834465151470488383537}{1155546480925376817541185342645002} a^{14} + \frac{115547271243325461400351238431949}{2311092961850753635082370685290004} a^{13} + \frac{68673074134370112183204132924531}{4622185923701507270164741370580008} a^{12} - \frac{703769517377491083015165327944009}{9244371847403014540329482741160016} a^{11} + \frac{14650022348863754000089882892403}{577773240462688408770592671322501} a^{10} - \frac{5893172561271547860033720426697}{214985391800070105589057738166512} a^{9} - \frac{343990211333280178589813155054239}{4622185923701507270164741370580008} a^{8} + \frac{857295116316530813354242882591571}{4622185923701507270164741370580008} a^{7} - \frac{195000071755906999944852901047989}{4622185923701507270164741370580008} a^{6} + \frac{409847457420903964916886326019587}{2311092961850753635082370685290004} a^{5} + \frac{136513133670785708175389993759891}{1155546480925376817541185342645002} a^{4} - \frac{48431397109645422431442432263771}{577773240462688408770592671322501} a^{3} - \frac{65499880402198532376206498469327}{1155546480925376817541185342645002} a^{2} - \frac{273394480536784766674784082623179}{577773240462688408770592671322501} a - \frac{222633480435993725827555667584732}{577773240462688408770592671322501}$
Class group and class number
$C_{2}\times C_{65164}$, which has order $130328$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1589230.00872 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-330}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-15}, \sqrt{22})\), \(\Q(\zeta_{11})^+\), 10.0.58673283984691200000.1, 10.10.77265229938688.1, 10.0.162778775259375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||