Normalized defining polynomial
\( x^{20} + 11 x^{18} + 77 x^{16} + 330 x^{14} + 1034 x^{12} + 2189 x^{10} + 3388 x^{8} + 3267 x^{6} + 2178 x^{4} + 605 x^{2} + 121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(344255425354822086003595935744=2^{20}\cdot 3^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(132=2^{2}\cdot 3\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{132}(1,·)$, $\chi_{132}(131,·)$, $\chi_{132}(5,·)$, $\chi_{132}(7,·)$, $\chi_{132}(79,·)$, $\chi_{132}(43,·)$, $\chi_{132}(83,·)$, $\chi_{132}(25,·)$, $\chi_{132}(89,·)$, $\chi_{132}(95,·)$, $\chi_{132}(97,·)$, $\chi_{132}(35,·)$, $\chi_{132}(37,·)$, $\chi_{132}(113,·)$, $\chi_{132}(107,·)$, $\chi_{132}(49,·)$, $\chi_{132}(19,·)$, $\chi_{132}(53,·)$, $\chi_{132}(125,·)$, $\chi_{132}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{473} a^{16} - \frac{7}{473} a^{14} + \frac{6}{473} a^{12} + \frac{10}{473} a^{10} + \frac{21}{43} a^{8} - \frac{18}{43} a^{6} + \frac{21}{43} a^{4} - \frac{18}{43} a^{2} - \frac{3}{43}$, $\frac{1}{473} a^{17} - \frac{7}{473} a^{15} + \frac{6}{473} a^{13} + \frac{10}{473} a^{11} + \frac{21}{43} a^{9} - \frac{18}{43} a^{7} + \frac{21}{43} a^{5} - \frac{18}{43} a^{3} - \frac{3}{43} a$, $\frac{1}{3454319} a^{18} + \frac{1064}{3454319} a^{16} - \frac{62617}{3454319} a^{14} + \frac{11597}{314029} a^{12} + \frac{48824}{3454319} a^{10} - \frac{55701}{314029} a^{8} + \frac{34063}{314029} a^{6} + \frac{10906}{314029} a^{4} + \frac{142657}{314029} a^{2} + \frac{53590}{314029}$, $\frac{1}{3454319} a^{19} + \frac{1064}{3454319} a^{17} - \frac{62617}{3454319} a^{15} + \frac{11597}{314029} a^{13} + \frac{48824}{3454319} a^{11} - \frac{55701}{314029} a^{9} + \frac{34063}{314029} a^{7} + \frac{10906}{314029} a^{5} + \frac{142657}{314029} a^{3} + \frac{53590}{314029} a$
Class group and class number
$C_{22}$, which has order $22$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{10843}{3454319} a^{18} + \frac{10460}{314029} a^{16} + \frac{792503}{3454319} a^{14} + \frac{3292525}{3454319} a^{12} + \frac{10082302}{3454319} a^{10} + \frac{1854422}{314029} a^{8} + \frac{2778327}{314029} a^{6} + \frac{2435481}{314029} a^{4} + \frac{1712232}{314029} a^{2} + \frac{473264}{314029} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-33}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-3}, \sqrt{11})\), \(\Q(\zeta_{11})^+\), 10.0.586732839846912.1, 10.0.52089208083.1, \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 11 | Data not computed | ||||||