Normalized defining polynomial
\( x^{20} - x^{19} + 3 x^{18} + 9 x^{17} + 17 x^{16} + 74 x^{15} - 47 x^{14} - 416 x^{13} + 8 x^{12} + 573 x^{11} + 1575 x^{10} + 522 x^{9} - 1254 x^{8} - 2010 x^{7} - 942 x^{6} + 1458 x^{5} + 2853 x^{4} + 1980 x^{3} + 1647 x^{2} + 216 x + 351 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3440348408794801675464162130041=3^{18}\cdot 11^{8}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6}$, $\frac{1}{99} a^{17} - \frac{7}{99} a^{16} - \frac{1}{33} a^{14} + \frac{47}{99} a^{13} + \frac{26}{99} a^{12} + \frac{49}{99} a^{11} - \frac{23}{99} a^{10} + \frac{32}{99} a^{9} + \frac{5}{11} a^{8} - \frac{13}{33} a^{7} + \frac{16}{33} a^{6} - \frac{16}{33} a^{5} - \frac{13}{33} a^{4} + \frac{4}{33} a^{3} + \frac{3}{11} a^{2} - \frac{5}{11} a - \frac{2}{11}$, $\frac{1}{1881} a^{18} + \frac{1}{1881} a^{17} + \frac{241}{1881} a^{16} + \frac{65}{627} a^{15} + \frac{188}{1881} a^{14} - \frac{185}{627} a^{13} - \frac{337}{1881} a^{12} - \frac{36}{209} a^{11} + \frac{673}{1881} a^{10} + \frac{334}{1881} a^{9} + \frac{98}{209} a^{8} - \frac{5}{19} a^{7} + \frac{85}{209} a^{6} - \frac{69}{209} a^{5} - \frac{265}{627} a^{4} - \frac{256}{627} a^{3} - \frac{3}{209} a^{2} + \frac{3}{11} a + \frac{83}{209}$, $\frac{1}{41446583984684539028245583731509} a^{19} + \frac{7538517582185786430187809380}{41446583984684539028245583731509} a^{18} + \frac{62249878856971100956467758102}{13815527994894846342748527910503} a^{17} - \frac{1569200541706665331278549162334}{13815527994894846342748527910503} a^{16} + \frac{1190831165670837406641631297781}{41446583984684539028245583731509} a^{15} - \frac{4697259306684888002803741740817}{41446583984684539028245583731509} a^{14} + \frac{12966853151896945081598403788038}{41446583984684539028245583731509} a^{13} - \frac{9464425328323115483215497963506}{41446583984684539028245583731509} a^{12} + \frac{6051648502428481869450070967069}{41446583984684539028245583731509} a^{11} + \frac{281393957296281910685862325127}{1255957090444986031158957082773} a^{10} - \frac{1924126432499456459012151833515}{13815527994894846342748527910503} a^{9} - \frac{2720844995134640359506091832914}{13815527994894846342748527910503} a^{8} + \frac{314817681991044773907522347591}{727133052362886649618343574237} a^{7} + \frac{2261664737015520184160717632493}{13815527994894846342748527910503} a^{6} - \frac{430195166873090235947951714413}{1255957090444986031158957082773} a^{5} + \frac{434169459219297908555642709475}{4605175998298282114249509303501} a^{4} + \frac{464543841903505819890568287331}{1535058666099427371416503101167} a^{3} - \frac{407739365852707880569084878853}{4605175998298282114249509303501} a^{2} - \frac{152665643008131706428238855839}{1535058666099427371416503101167} a - \frac{300321909641556195741410975020}{1535058666099427371416503101167}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8168530.39139 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 5.5.5184729.1, 10.4.80644244410323.1, 10.0.618272540479143.1, 10.6.1854817621437429.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.6.9.4 | $x^{6} + 6 x^{4} + 6$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| 3.6.9.4 | $x^{6} + 6 x^{4} + 6$ | $6$ | $1$ | $9$ | $D_{6}$ | $[2]_{2}^{2}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |