Normalized defining polynomial
\( x^{20} + 10 x^{18} + 65 x^{16} - x^{15} + 250 x^{14} - 15 x^{13} + 700 x^{12} - 75 x^{11} + 1252 x^{10} - 250 x^{9} + 1620 x^{8} - 375 x^{7} + 1200 x^{6} - 374 x^{5} + 600 x^{4} - 115 x^{3} + 50 x^{2} + 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34371041692793369293212890625=3^{10}\cdot 5^{34}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(75=3\cdot 5^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{75}(64,·)$, $\chi_{75}(1,·)$, $\chi_{75}(4,·)$, $\chi_{75}(71,·)$, $\chi_{75}(74,·)$, $\chi_{75}(11,·)$, $\chi_{75}(14,·)$, $\chi_{75}(16,·)$, $\chi_{75}(19,·)$, $\chi_{75}(26,·)$, $\chi_{75}(29,·)$, $\chi_{75}(31,·)$, $\chi_{75}(34,·)$, $\chi_{75}(41,·)$, $\chi_{75}(44,·)$, $\chi_{75}(46,·)$, $\chi_{75}(49,·)$, $\chi_{75}(56,·)$, $\chi_{75}(59,·)$, $\chi_{75}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} - \frac{1}{7} a^{17} - \frac{3}{7} a^{15} - \frac{2}{7} a^{14} - \frac{1}{7} a^{13} + \frac{3}{7} a^{11} - \frac{3}{7} a^{10} - \frac{3}{7} a^{8} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{123895888665357296201} a^{19} + \frac{1074778453821408592}{123895888665357296201} a^{18} - \frac{17278477562052529184}{123895888665357296201} a^{17} + \frac{9821455351051768302}{123895888665357296201} a^{16} + \frac{40352716861929356910}{123895888665357296201} a^{15} - \frac{17443055563607815565}{123895888665357296201} a^{14} + \frac{17256796252429575151}{123895888665357296201} a^{13} - \frac{49146316383663203989}{123895888665357296201} a^{12} + \frac{34753366905137198463}{123895888665357296201} a^{11} + \frac{24225282215666387505}{123895888665357296201} a^{10} + \frac{5082425595277210562}{123895888665357296201} a^{9} + \frac{3331691963215954692}{123895888665357296201} a^{8} + \frac{3636578360876401158}{17699412666479613743} a^{7} - \frac{33057243118958634105}{123895888665357296201} a^{6} - \frac{9182417943214236376}{123895888665357296201} a^{5} + \frac{48916143508119544365}{123895888665357296201} a^{4} - \frac{9618844111753069192}{123895888665357296201} a^{3} + \frac{24946186641753538699}{123895888665357296201} a^{2} + \frac{19334146281372809205}{123895888665357296201} a + \frac{60197056974878048053}{123895888665357296201}$
Class group and class number
$C_{11}$, which has order $11$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{13774208472919240275}{123895888665357296201} a^{19} + \frac{382066827692298620}{17699412666479613743} a^{18} - \frac{137164077990950747325}{123895888665357296201} a^{17} + \frac{26470511705567367715}{123895888665357296201} a^{16} - \frac{889559607599424633212}{123895888665357296201} a^{15} + \frac{185126722381440625300}{123895888665357296201} a^{14} - \frac{3408847727467512056245}{123895888665357296201} a^{13} + \frac{859144571943349812725}{123895888665357296201} a^{12} - \frac{1362653781943486195795}{17699412666479613743} a^{11} + \frac{2842604995199868420799}{123895888665357296201} a^{10} - \frac{17042908231073900963350}{123895888665357296201} a^{9} + \frac{6608762265921429897110}{123895888665357296201} a^{8} - \frac{22257800152921173475725}{123895888665357296201} a^{7} + \frac{9151778838286061491945}{123895888665357296201} a^{6} - \frac{16573754873024478540924}{123895888665357296201} a^{5} + \frac{1132183280788913512100}{17699412666479613743} a^{4} - \frac{8555215306098145906225}{123895888665357296201} a^{3} + \frac{2961654402315400227050}{123895888665357296201} a^{2} - \frac{634381023420555017655}{123895888665357296201} a + \frac{63097548086625515913}{123895888665357296201} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.837641 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.185394287109375.1, 10.0.37078857421875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||