Normalized defining polynomial
\( x^{20} - 5 x^{19} + 15 x^{18} - 35 x^{17} + 70 x^{16} - 97 x^{15} + 95 x^{14} - 135 x^{13} + 590 x^{12} - 2555 x^{11} + 5169 x^{10} - 6185 x^{9} + 2780 x^{8} + 4905 x^{7} + 1565 x^{6} - 7753 x^{5} + 3460 x^{4} + 595 x^{3} - 2205 x^{2} - 1715 x + 2401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33630250781250000000000000000=2^{16}\cdot 3^{16}\cdot 5^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{2}$, $\frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{2}{25} a^{6} - \frac{2}{25} a^{5} + \frac{12}{25} a^{3} + \frac{12}{25} a^{2} - \frac{1}{25} a + \frac{1}{25}$, $\frac{1}{25} a^{9} + \frac{1}{25} a^{7} + \frac{1}{25} a^{6} + \frac{2}{25} a^{5} + \frac{12}{25} a^{4} + \frac{12}{25} a^{2} + \frac{12}{25} a - \frac{1}{25}$, $\frac{1}{25} a^{10} - \frac{1}{25} a^{5} - \frac{6}{25}$, $\frac{1}{125} a^{11} + \frac{2}{125} a^{10} - \frac{1}{125} a^{6} - \frac{2}{125} a^{5} - \frac{31}{125} a - \frac{62}{125}$, $\frac{1}{125} a^{12} + \frac{1}{125} a^{10} - \frac{1}{125} a^{7} - \frac{1}{125} a^{5} - \frac{31}{125} a^{2} - \frac{31}{125}$, $\frac{1}{125} a^{13} - \frac{2}{125} a^{10} - \frac{1}{125} a^{8} + \frac{2}{125} a^{5} - \frac{31}{125} a^{3} + \frac{62}{125}$, $\frac{1}{125} a^{14} - \frac{1}{125} a^{10} - \frac{1}{125} a^{9} + \frac{1}{125} a^{5} - \frac{31}{125} a^{4} + \frac{31}{125}$, $\frac{1}{625} a^{15} + \frac{11}{625} a^{10} - \frac{43}{625} a^{5} + \frac{253}{625}$, $\frac{1}{625} a^{16} + \frac{1}{625} a^{11} + \frac{1}{125} a^{10} - \frac{33}{625} a^{6} - \frac{1}{125} a^{5} - \frac{62}{625} a - \frac{31}{125}$, $\frac{1}{13698125} a^{17} + \frac{7268}{13698125} a^{16} - \frac{487}{2739625} a^{15} + \frac{1402}{391375} a^{14} + \frac{1002}{391375} a^{13} - \frac{47564}{13698125} a^{12} + \frac{43348}{13698125} a^{11} + \frac{35211}{2739625} a^{10} - \frac{30304}{2739625} a^{9} - \frac{557}{391375} a^{8} - \frac{548468}{13698125} a^{7} + \frac{820151}{13698125} a^{6} + \frac{33113}{2739625} a^{5} + \frac{1319886}{2739625} a^{4} + \frac{574446}{2739625} a^{3} + \frac{1415578}{13698125} a^{2} - \frac{6723071}{13698125} a - \frac{119152}{391375}$, $\frac{1}{95886875} a^{18} + \frac{2}{95886875} a^{17} + \frac{30164}{95886875} a^{16} - \frac{4701}{13698125} a^{15} - \frac{3918}{2739625} a^{14} + \frac{247696}{95886875} a^{13} + \frac{121867}{95886875} a^{12} + \frac{178694}{95886875} a^{11} + \frac{563733}{95886875} a^{10} + \frac{44803}{2739625} a^{9} - \frac{1139128}{95886875} a^{8} - \frac{2576606}{95886875} a^{7} - \frac{10432}{3093125} a^{6} - \frac{5689084}{95886875} a^{5} + \frac{8898671}{19177375} a^{4} + \frac{28775218}{95886875} a^{3} + \frac{10649711}{95886875} a^{2} - \frac{2430964}{13698125} a - \frac{612344}{1956875}$, $\frac{1}{3356040625} a^{19} - \frac{12}{3356040625} a^{18} + \frac{99}{3356040625} a^{17} + \frac{286546}{479434375} a^{16} + \frac{2353}{4746875} a^{15} - \frac{459864}{3356040625} a^{14} + \frac{11819868}{3356040625} a^{13} - \frac{1945561}{3356040625} a^{12} - \frac{6977633}{3356040625} a^{11} + \frac{3441183}{479434375} a^{10} + \frac{740797}{108259375} a^{9} + \frac{52003766}{3356040625} a^{8} - \frac{202616357}{3356040625} a^{7} - \frac{181355421}{3356040625} a^{6} + \frac{35005072}{3356040625} a^{5} + \frac{494617378}{3356040625} a^{4} - \frac{97170911}{3356040625} a^{3} - \frac{62252954}{479434375} a^{2} + \frac{30119059}{68490625} a - \frac{2302909}{9784375}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{22538}{95886875} a^{19} - \frac{101421}{95886875} a^{18} + \frac{300177}{95886875} a^{17} - \frac{22538}{3093125} a^{16} + \frac{202842}{13698125} a^{15} - \frac{1949537}{95886875} a^{14} + \frac{2152379}{95886875} a^{13} - \frac{485239}{13698125} a^{12} + \frac{428222}{3093125} a^{11} - \frac{53065721}{95886875} a^{10} + \frac{97014821}{95886875} a^{9} - \frac{121457282}{95886875} a^{8} + \frac{66644384}{95886875} a^{7} + \frac{44298439}{95886875} a^{6} + \frac{134405363}{95886875} a^{5} - \frac{79716906}{95886875} a^{4} + \frac{2186186}{13698125} a^{3} + \frac{121005001}{95886875} a^{2} + \frac{236649}{1956875} a - \frac{1104362}{1956875} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1373081.37212 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.4050000.4 x5, 10.2.82012500000000.5 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.4050000.4 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||