Normalized defining polynomial
\( x^{20} - 5 x^{19} + 10 x^{18} - 10 x^{17} + 30 x^{16} - 113 x^{15} - 30 x^{14} + 590 x^{13} + 275 x^{12} - 2640 x^{11} - 2256 x^{10} + 6770 x^{9} + 8900 x^{8} - 9670 x^{7} - 21040 x^{6} + 9408 x^{5} + 56075 x^{4} + 65245 x^{3} + 37290 x^{2} + 10890 x + 1331 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33630250781250000000000000000=2^{16}\cdot 3^{16}\cdot 5^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{11} a^{11} - \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{1}{11} a^{2}$, $\frac{1}{11} a^{13} - \frac{1}{11} a^{3}$, $\frac{1}{11} a^{14} - \frac{1}{11} a^{4}$, $\frac{1}{11} a^{15} - \frac{1}{11} a^{5}$, $\frac{1}{121} a^{16} + \frac{1}{121} a^{15} + \frac{4}{121} a^{14} - \frac{1}{121} a^{13} - \frac{5}{121} a^{12} + \frac{4}{11} a^{10} - \frac{5}{11} a^{9} - \frac{3}{11} a^{8} - \frac{1}{11} a^{7} + \frac{54}{121} a^{6} - \frac{56}{121} a^{5} - \frac{37}{121} a^{4} + \frac{56}{121} a^{3} - \frac{28}{121} a^{2} - \frac{5}{11} a$, $\frac{1}{2299} a^{17} - \frac{3}{2299} a^{16} + \frac{7}{209} a^{15} - \frac{28}{2299} a^{14} - \frac{56}{2299} a^{13} + \frac{20}{2299} a^{12} - \frac{5}{209} a^{11} + \frac{1}{209} a^{10} - \frac{104}{209} a^{9} + \frac{5}{19} a^{8} - \frac{23}{2299} a^{7} - \frac{998}{2299} a^{6} - \frac{56}{209} a^{5} + \frac{1062}{2299} a^{4} + \frac{892}{2299} a^{3} + \frac{904}{2299} a^{2} - \frac{4}{209} a + \frac{3}{19}$, $\frac{1}{278179} a^{18} + \frac{21}{278179} a^{17} + \frac{24}{278179} a^{16} - \frac{3177}{278179} a^{15} - \frac{234}{278179} a^{14} - \frac{7613}{278179} a^{13} + \frac{1075}{25289} a^{12} + \frac{812}{25289} a^{11} + \frac{11700}{25289} a^{10} + \frac{5197}{25289} a^{9} + \frac{609}{14641} a^{8} + \frac{67211}{278179} a^{7} + \frac{91408}{278179} a^{6} - \frac{76441}{278179} a^{5} + \frac{68940}{278179} a^{4} + \frac{73327}{278179} a^{3} + \frac{10907}{25289} a^{2} + \frac{490}{2299} a - \frac{85}{209}$, $\frac{1}{7291006999153314415914529} a^{19} + \frac{11602474393209342816}{7291006999153314415914529} a^{18} + \frac{299594127511173893732}{7291006999153314415914529} a^{17} - \frac{12739160141633458273501}{7291006999153314415914529} a^{16} + \frac{159833510168861712979393}{7291006999153314415914529} a^{15} + \frac{2319547260565377986629}{383737210481753390311291} a^{14} - \frac{330875448439360579676172}{7291006999153314415914529} a^{13} + \frac{10438935400023625255061}{662818818104846765083139} a^{12} - \frac{394422491593424562703}{60256256191349705916649} a^{11} - \frac{215651320867309603704811}{662818818104846765083139} a^{10} - \frac{2402867441159870756452778}{7291006999153314415914529} a^{9} - \frac{46735313971413588285975}{383737210481753390311291} a^{8} + \frac{3106161305252212570765387}{7291006999153314415914529} a^{7} + \frac{1638912663279372220681130}{7291006999153314415914529} a^{6} - \frac{3564224845993864585718013}{7291006999153314415914529} a^{5} + \frac{701049212446925235407300}{7291006999153314415914529} a^{4} + \frac{1366484865816964233318515}{7291006999153314415914529} a^{3} + \frac{3544636622371161589265}{34885200952886671846481} a^{2} - \frac{17230405337845797286641}{60256256191349705916649} a - \frac{2541075667502514579014}{5477841471940882356059}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{34704080550713934194328}{7291006999153314415914529} a^{19} + \frac{195269511134846039557828}{7291006999153314415914529} a^{18} - \frac{462177931402987797129216}{7291006999153314415914529} a^{17} + \frac{592038570268379157985191}{7291006999153314415914529} a^{16} - \frac{1290941094233683499028924}{7291006999153314415914529} a^{15} + \frac{4537989881580364605381936}{7291006999153314415914529} a^{14} - \frac{1420426814166360511838952}{7291006999153314415914529} a^{13} - \frac{1886664169360231493473512}{662818818104846765083139} a^{12} + \frac{36590012081259043450620}{60256256191349705916649} a^{11} + \frac{8413097927406668412777456}{662818818104846765083139} a^{10} + \frac{17445599121664302393629516}{7291006999153314415914529} a^{9} - \frac{263404650816701732505510450}{7291006999153314415914529} a^{8} - \frac{137861802513877995273195864}{7291006999153314415914529} a^{7} + \frac{472317531920292241910703000}{7291006999153314415914529} a^{6} + \frac{434908252738021462584570492}{7291006999153314415914529} a^{5} - \frac{693683759052740603590492692}{7291006999153314415914529} a^{4} - \frac{1548798298783130483057131296}{7291006999153314415914529} a^{3} - \frac{103074569665775941855110996}{662818818104846765083139} a^{2} - \frac{2927433816484318380568308}{60256256191349705916649} a - \frac{26196369935495136614815}{5477841471940882356059} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3774223.93146 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.4050000.3 x5, 10.2.82012500000000.7 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.4050000.3 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||