Normalized defining polynomial
\( x^{20} - 5 x^{19} - 15 x^{18} + 115 x^{17} - 20 x^{16} - 841 x^{15} + 1115 x^{14} + 1785 x^{13} - 3880 x^{12} - 1055 x^{11} + 5601 x^{10} - 1055 x^{9} - 3880 x^{8} + 1785 x^{7} + 1115 x^{6} - 841 x^{5} - 20 x^{4} + 115 x^{3} - 15 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33630250781250000000000000000=2^{16}\cdot 3^{16}\cdot 5^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{192601} a^{18} + \frac{4397}{192601} a^{17} + \frac{95478}{192601} a^{16} + \frac{34492}{192601} a^{15} - \frac{31302}{192601} a^{14} + \frac{75579}{192601} a^{13} - \frac{83353}{192601} a^{12} - \frac{88795}{192601} a^{11} - \frac{8688}{192601} a^{10} - \frac{21838}{192601} a^{9} - \frac{8688}{192601} a^{8} - \frac{88795}{192601} a^{7} - \frac{83353}{192601} a^{6} + \frac{75579}{192601} a^{5} - \frac{31302}{192601} a^{4} + \frac{34492}{192601} a^{3} + \frac{95478}{192601} a^{2} + \frac{4397}{192601} a + \frac{1}{192601}$, $\frac{1}{192601} a^{19} + \frac{21969}{192601} a^{17} + \frac{87906}{192601} a^{16} + \frac{76962}{192601} a^{15} + \frac{758}{192601} a^{14} + \frac{25110}{192601} a^{13} + \frac{87244}{192601} a^{12} + \frac{20700}{192601} a^{11} + \frac{44300}{192601} a^{10} - \frac{94901}{192601} a^{9} - \frac{22657}{192601} a^{8} - \frac{53965}{192601} a^{7} + \frac{59017}{192601} a^{6} + \frac{77161}{192601} a^{5} - \frac{40329}{192601} a^{4} + \frac{11141}{192601} a^{3} + \frac{57811}{192601} a^{2} - \frac{73508}{192601} a - \frac{4397}{192601}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{44178756}{192601} a^{19} + \frac{202391951}{192601} a^{18} + \frac{747500583}{192601} a^{17} - \frac{4767816726}{192601} a^{16} - \frac{1114011060}{192601} a^{15} + \frac{36694952193}{192601} a^{14} - \frac{33893590275}{192601} a^{13} - \frac{93106969701}{192601} a^{12} + \frac{132493169760}{192601} a^{11} + \frac{102220489827}{192601} a^{10} - \frac{204889631403}{192601} a^{9} - \frac{39318071136}{192601} a^{8} + \frac{155329081632}{192601} a^{7} - \frac{13773796485}{192601} a^{6} - \frac{55313863005}{192601} a^{5} + \frac{14009629458}{192601} a^{4} + \frac{6850811370}{192601} a^{3} - \frac{2225770689}{192601} a^{2} - \frac{281406231}{192601} a + \frac{104446392}{192601} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1117806.26947 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.4050000.1 x5, 10.2.82012500000000.18 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.4050000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||