Normalized defining polynomial
\( x^{20} - 6 x^{19} + 18 x^{18} - 32 x^{17} + 41 x^{16} + x^{15} - 113 x^{14} + 222 x^{13} - 194 x^{12} - 14 x^{11} + 723 x^{10} - 446 x^{9} + 1142 x^{8} + 574 x^{7} + 89 x^{6} + 2241 x^{5} + 424 x^{4} + 340 x^{3} + 629 x^{2} + 289 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33626538312268515533112249=3^{10}\cdot 7^{10}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} - \frac{5}{17} a^{14} + \frac{4}{17} a^{13} + \frac{4}{17} a^{12} + \frac{6}{17} a^{11} + \frac{4}{17} a^{10} + \frac{6}{17} a^{9} - \frac{5}{17} a^{8} + \frac{1}{17} a^{7} + \frac{5}{17} a^{6} + \frac{2}{17} a^{5} + \frac{8}{17} a^{4} - \frac{4}{17} a^{3} - \frac{4}{17} a^{2}$, $\frac{1}{17} a^{16} - \frac{4}{17} a^{14} + \frac{7}{17} a^{13} - \frac{8}{17} a^{12} - \frac{8}{17} a^{10} + \frac{8}{17} a^{9} - \frac{7}{17} a^{8} - \frac{7}{17} a^{7} - \frac{7}{17} a^{6} + \frac{1}{17} a^{5} + \frac{2}{17} a^{4} - \frac{7}{17} a^{3} - \frac{3}{17} a^{2}$, $\frac{1}{24497} a^{17} - \frac{21}{24497} a^{16} + \frac{128}{24497} a^{15} + \frac{177}{2227} a^{14} - \frac{766}{24497} a^{13} - \frac{1548}{24497} a^{12} + \frac{3521}{24497} a^{11} + \frac{5107}{24497} a^{10} - \frac{11606}{24497} a^{9} + \frac{7538}{24497} a^{8} + \frac{529}{1441} a^{7} + \frac{2423}{24497} a^{6} - \frac{5212}{24497} a^{5} - \frac{9822}{24497} a^{4} - \frac{7065}{24497} a^{3} - \frac{8829}{24497} a^{2} + \frac{222}{1441} a - \frac{39}{1441}$, $\frac{1}{171479} a^{18} + \frac{3}{171479} a^{17} - \frac{376}{171479} a^{16} - \frac{745}{171479} a^{15} - \frac{72200}{171479} a^{14} + \frac{78}{2227} a^{13} + \frac{41301}{171479} a^{12} + \frac{7861}{24497} a^{11} - \frac{34579}{171479} a^{10} + \frac{37368}{171479} a^{9} - \frac{26245}{171479} a^{8} + \frac{65509}{171479} a^{7} + \frac{48617}{171479} a^{6} - \frac{1409}{10087} a^{5} + \frac{5059}{171479} a^{4} - \frac{32848}{171479} a^{3} + \frac{59904}{171479} a^{2} + \frac{2407}{10087} a - \frac{2377}{10087}$, $\frac{1}{5790623817320148923028913} a^{19} + \frac{10528743612965282854}{5790623817320148923028913} a^{18} - \frac{107938294626893641912}{5790623817320148923028913} a^{17} - \frac{10392715134069980556043}{526420347029104447548083} a^{16} - \frac{165146356422209250155528}{5790623817320148923028913} a^{15} + \frac{1603315102127240882822696}{5790623817320148923028913} a^{14} + \frac{1352190730717201196617650}{5790623817320148923028913} a^{13} - \frac{2174194963212209622378989}{5790623817320148923028913} a^{12} + \frac{1937416569585088572873201}{5790623817320148923028913} a^{11} + \frac{2231639417099088234095509}{5790623817320148923028913} a^{10} - \frac{216637776538693523524466}{5790623817320148923028913} a^{9} - \frac{2457382216721756224143084}{5790623817320148923028913} a^{8} - \frac{1526232482080413422295492}{5790623817320148923028913} a^{7} + \frac{2774521608340512783795608}{5790623817320148923028913} a^{6} - \frac{100470211791246063034}{622580778122798508013} a^{5} - \frac{2118801426361907753879646}{5790623817320148923028913} a^{4} - \frac{2586646764539245385396711}{5790623817320148923028913} a^{3} - \frac{117840599515833870047884}{5790623817320148923028913} a^{2} + \frac{24870278135304882381903}{340624930430596995472289} a + \frac{43177611347046043824870}{340624930430596995472289}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16449.1582833 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{21}, \sqrt{-51})\), 5.1.14161.1 x5, 10.0.23863536599.2, 10.0.828405627651.1 x5, 10.2.341108199621.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |