Normalized defining polynomial
\( x^{20} - 6 x^{19} + 13 x^{18} - 6 x^{17} - 18 x^{16} - 18 x^{15} + 296 x^{14} - 939 x^{13} + 1648 x^{12} - 1689 x^{11} + 727 x^{10} + 537 x^{9} - 1049 x^{8} + 546 x^{7} + 156 x^{6} - 315 x^{5} + 354 x^{4} - 399 x^{3} + 14 x^{2} + 147 x + 49 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33626538312268515533112249=3^{10}\cdot 7^{10}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} + \frac{3}{7} a^{9} - \frac{2}{7} a^{7} - \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{3} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{9} - \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{9} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{7} a^{4} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{2}{7} a^{7} + \frac{2}{7} a^{6} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} + \frac{3}{7} a^{2}$, $\frac{1}{7} a^{14} - \frac{2}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{15} - \frac{2}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{77} a^{16} - \frac{1}{77} a^{15} + \frac{4}{77} a^{14} - \frac{3}{77} a^{12} + \frac{3}{77} a^{11} + \frac{1}{77} a^{10} + \frac{3}{11} a^{9} - \frac{5}{77} a^{8} - \frac{6}{77} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{5} - \frac{38}{77} a^{4} - \frac{30}{77} a^{3} - \frac{29}{77} a^{2} + \frac{2}{11} a + \frac{2}{11}$, $\frac{1}{539} a^{17} + \frac{1}{539} a^{16} - \frac{31}{539} a^{15} + \frac{8}{539} a^{14} - \frac{3}{539} a^{13} + \frac{30}{539} a^{12} - \frac{4}{539} a^{11} - \frac{32}{539} a^{10} + \frac{92}{539} a^{9} - \frac{16}{539} a^{8} + \frac{10}{539} a^{7} + \frac{8}{49} a^{6} - \frac{16}{539} a^{5} - \frac{205}{539} a^{4} + \frac{36}{77} a^{3} - \frac{1}{7} a^{2} + \frac{4}{11} a - \frac{1}{11}$, $\frac{1}{5929} a^{18} + \frac{2}{5929} a^{17} + \frac{26}{5929} a^{16} + \frac{75}{5929} a^{15} + \frac{383}{5929} a^{14} - \frac{204}{5929} a^{13} - \frac{65}{5929} a^{12} + \frac{3}{49} a^{11} + \frac{270}{5929} a^{10} - \frac{134}{5929} a^{9} + \frac{93}{539} a^{8} + \frac{318}{847} a^{7} + \frac{2921}{5929} a^{6} + \frac{2474}{5929} a^{5} + \frac{2231}{5929} a^{4} - \frac{48}{121} a^{3} + \frac{192}{847} a^{2} - \frac{25}{121} a - \frac{40}{121}$, $\frac{1}{3706599769103} a^{19} + \frac{260748634}{3706599769103} a^{18} + \frac{2214247316}{3706599769103} a^{17} + \frac{5451986322}{3706599769103} a^{16} - \frac{219144348229}{3706599769103} a^{15} + \frac{33197503803}{529514252729} a^{14} - \frac{124140558547}{3706599769103} a^{13} + \frac{146853999469}{3706599769103} a^{12} - \frac{10530503131}{3706599769103} a^{11} + \frac{19275321801}{529514252729} a^{10} + \frac{1308627268661}{3706599769103} a^{9} + \frac{224293790841}{529514252729} a^{8} + \frac{847153867680}{3706599769103} a^{7} + \frac{261859526087}{3706599769103} a^{6} + \frac{452711529157}{3706599769103} a^{5} - \frac{95149250983}{336963615373} a^{4} + \frac{223729878833}{529514252729} a^{3} - \frac{141130155116}{529514252729} a^{2} - \frac{23378604050}{75644893247} a - \frac{19969904027}{75644893247}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{574916563}{30633055943} a^{19} - \frac{2954859485}{30633055943} a^{18} + \frac{5347822169}{30633055943} a^{17} - \frac{1001458021}{30633055943} a^{16} - \frac{7656267522}{30633055943} a^{15} - \frac{2345627673}{4376150849} a^{14} + \frac{149427817232}{30633055943} a^{13} - \frac{425142505990}{30633055943} a^{12} + \frac{692612131753}{30633055943} a^{11} - \frac{95582213596}{4376150849} a^{10} + \frac{278158007802}{30633055943} a^{9} + \frac{28263712265}{4376150849} a^{8} - \frac{379184265344}{30633055943} a^{7} + \frac{203321325164}{30633055943} a^{6} + \frac{5781911775}{30633055943} a^{5} - \frac{74451936670}{30633055943} a^{4} + \frac{21946658744}{4376150849} a^{3} - \frac{19749481265}{4376150849} a^{2} + \frac{330991204}{625164407} a + \frac{597837970}{625164407} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 107340.04077 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-119}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{357}) \), \(\Q(\sqrt{-3}, \sqrt{-119})\), 5.1.14161.1 x5, 10.0.23863536599.2, 10.0.48729742803.1 x5, 10.2.5798839393557.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |