Normalized defining polynomial
\( x^{20} - 2 x^{19} + 31 x^{18} - 50 x^{17} + 618 x^{16} - 936 x^{15} + 8702 x^{14} - 11788 x^{13} + 92914 x^{12} - 115100 x^{11} + 776698 x^{10} - 862794 x^{9} + 5053831 x^{8} - 4931470 x^{7} + 25267471 x^{6} - 20925574 x^{5} + 92642076 x^{4} - 59924902 x^{3} + 223626538 x^{2} - 87181604 x + 261399601 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3361869388230684433628866560000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(660=2^{2}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{660}(1,·)$, $\chi_{660}(619,·)$, $\chi_{660}(199,·)$, $\chi_{660}(461,·)$, $\chi_{660}(659,·)$, $\chi_{660}(281,·)$, $\chi_{660}(239,·)$, $\chi_{660}(101,·)$, $\chi_{660}(161,·)$, $\chi_{660}(421,·)$, $\chi_{660}(359,·)$, $\chi_{660}(41,·)$, $\chi_{660}(299,·)$, $\chi_{660}(301,·)$, $\chi_{660}(559,·)$, $\chi_{660}(499,·)$, $\chi_{660}(181,·)$, $\chi_{660}(479,·)$, $\chi_{660}(361,·)$, $\chi_{660}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{727} a^{18} - \frac{154}{727} a^{17} + \frac{210}{727} a^{16} - \frac{283}{727} a^{15} + \frac{94}{727} a^{14} + \frac{316}{727} a^{13} + \frac{310}{727} a^{12} + \frac{134}{727} a^{11} - \frac{209}{727} a^{10} - \frac{126}{727} a^{9} - \frac{260}{727} a^{8} - \frac{358}{727} a^{7} - \frac{31}{727} a^{6} - \frac{50}{727} a^{5} - \frac{169}{727} a^{4} + \frac{341}{727} a^{3} + \frac{152}{727} a^{2} - \frac{10}{727} a + \frac{181}{727}$, $\frac{1}{273266414566686629236028794334485415241535560565388644925339} a^{19} + \frac{139561566323376720671229228154775648454917488534686341183}{273266414566686629236028794334485415241535560565388644925339} a^{18} - \frac{72472875804831424424583785674097402330757747145398618501232}{273266414566686629236028794334485415241535560565388644925339} a^{17} - \frac{1126337814817362855057911543182813668375414007623343799919}{273266414566686629236028794334485415241535560565388644925339} a^{16} - \frac{96388363713519854055185879545132899202811062647810451286054}{273266414566686629236028794334485415241535560565388644925339} a^{15} - \frac{111138271186388176830846095341389188357605343401444122441819}{273266414566686629236028794334485415241535560565388644925339} a^{14} - \frac{129416297924739215767907101660790408141059441779804501842937}{273266414566686629236028794334485415241535560565388644925339} a^{13} + \frac{70445712567632238380098975613764191645182093232623052647275}{273266414566686629236028794334485415241535560565388644925339} a^{12} + \frac{93539071571368664041892949938373640294488316569750613186100}{273266414566686629236028794334485415241535560565388644925339} a^{11} + \frac{1424132953115713998242883918074178016936481882773033001046}{4078603202487860137851176034843065899127396426349084252617} a^{10} - \frac{60026333848168218956676293042971374615659843381068438636642}{273266414566686629236028794334485415241535560565388644925339} a^{9} - \frac{44468299459021259095381238204460124550438571489796365073175}{273266414566686629236028794334485415241535560565388644925339} a^{8} - \frac{108063968707072526152418411093112824026997161960626190240783}{273266414566686629236028794334485415241535560565388644925339} a^{7} - \frac{90017576089768326760494883451099552992535043620139278626739}{273266414566686629236028794334485415241535560565388644925339} a^{6} - \frac{50488207949321935614716154223735350453243647002241687735656}{273266414566686629236028794334485415241535560565388644925339} a^{5} - \frac{73356454836751464449327837182725394273336659842387631559297}{273266414566686629236028794334485415241535560565388644925339} a^{4} + \frac{33982264002972253276623924144670983532076173399795801764656}{273266414566686629236028794334485415241535560565388644925339} a^{3} - \frac{83425264631456339404606000395360926129081261456377664619056}{273266414566686629236028794334485415241535560565388644925339} a^{2} + \frac{131630362781487381624791572849649108720864634595930173616924}{273266414566686629236028794334485415241535560565388644925339} a - \frac{50189001092850480857747560004323832587025702790590447356100}{273266414566686629236028794334485415241535560565388644925339}$
Class group and class number
$C_{2}\times C_{22444}$, which has order $44888$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125582.779517 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{-5}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), 10.0.685948419200000.1, \(\Q(\zeta_{33})^+\), 10.0.1833540124521600000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||