Normalized defining polynomial
\( x^{20} - 10 x^{19} + 101 x^{18} - 624 x^{17} + 3723 x^{16} - 16932 x^{15} + 73284 x^{14} - 259722 x^{13} + 871872 x^{12} - 2466574 x^{11} + 6580762 x^{10} - 14901524 x^{9} + 31769904 x^{8} - 57031380 x^{7} + 96245877 x^{6} - 132713622 x^{5} + 176867685 x^{4} - 178742094 x^{3} + 183092351 x^{2} - 109373078 x + 175645009 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3361869388230684433628866560000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(660=2^{2}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{660}(1,·)$, $\chi_{660}(131,·)$, $\chi_{660}(529,·)$, $\chi_{660}(659,·)$, $\chi_{660}(239,·)$, $\chi_{660}(491,·)$, $\chi_{660}(229,·)$, $\chi_{660}(289,·)$, $\chi_{660}(611,·)$, $\chi_{660}(421,·)$, $\chi_{660}(359,·)$, $\chi_{660}(169,·)$, $\chi_{660}(299,·)$, $\chi_{660}(301,·)$, $\chi_{660}(431,·)$, $\chi_{660}(49,·)$, $\chi_{660}(371,·)$, $\chi_{660}(181,·)$, $\chi_{660}(361,·)$, $\chi_{660}(479,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{2}{9}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{4}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{9}$, $\frac{1}{27} a^{12} + \frac{1}{27} a^{9} - \frac{4}{27} a^{6} + \frac{8}{27} a^{3} + \frac{10}{27}$, $\frac{1}{27} a^{13} + \frac{1}{27} a^{10} - \frac{4}{27} a^{7} - \frac{1}{27} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{8}{27} a - \frac{1}{3}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{11} - \frac{1}{27} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{4}{27} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{11}{27} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{7}{27} a^{3} + \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{4}{27}$, $\frac{1}{81} a^{16} + \frac{1}{81} a^{15} - \frac{1}{81} a^{14} - \frac{1}{81} a^{12} - \frac{1}{81} a^{11} + \frac{4}{81} a^{10} + \frac{1}{27} a^{9} + \frac{4}{81} a^{8} + \frac{4}{27} a^{7} + \frac{7}{81} a^{6} - \frac{8}{81} a^{5} + \frac{11}{81} a^{4} + \frac{13}{27} a^{3} - \frac{10}{81} a^{2} + \frac{35}{81} a + \frac{34}{81}$, $\frac{1}{81} a^{17} + \frac{1}{81} a^{15} + \frac{1}{81} a^{14} - \frac{1}{81} a^{13} - \frac{4}{81} a^{11} - \frac{1}{81} a^{10} + \frac{4}{81} a^{9} - \frac{1}{81} a^{8} - \frac{5}{81} a^{7} + \frac{1}{27} a^{6} - \frac{8}{81} a^{5} + \frac{1}{81} a^{4} - \frac{34}{81} a^{3} + \frac{4}{9} a^{2} - \frac{1}{81} a - \frac{10}{81}$, $\frac{1}{3939001327911543391452321} a^{18} - \frac{1}{437666814212393710161369} a^{17} + \frac{4970392491037368970036}{3939001327911543391452321} a^{16} - \frac{39763139928298951760084}{3939001327911543391452321} a^{15} + \frac{39093529548556403821616}{3939001327911543391452321} a^{14} - \frac{5155524102352293703975}{1313000442637181130484107} a^{13} - \frac{69084412248368352814564}{3939001327911543391452321} a^{12} + \frac{119349489381528396745346}{3939001327911543391452321} a^{11} - \frac{54595423441687266352088}{3939001327911543391452321} a^{10} - \frac{171406921456817756541697}{3939001327911543391452321} a^{9} + \frac{60772184747595465717094}{3939001327911543391452321} a^{8} - \frac{161516928754180162946767}{1313000442637181130484107} a^{7} - \frac{69064089594317629851437}{3939001327911543391452321} a^{6} + \frac{462495656121060943652494}{3939001327911543391452321} a^{5} - \frac{398241602423407159861171}{3939001327911543391452321} a^{4} - \frac{264657363151349765221391}{1313000442637181130484107} a^{3} + \frac{64441131033114593240135}{3939001327911543391452321} a^{2} - \frac{1280978231480711650317487}{3939001327911543391452321} a + \frac{460515611627316058324264}{1313000442637181130484107}$, $\frac{1}{49803066592551848058668562392217} a^{19} + \frac{6321779}{49803066592551848058668562392217} a^{18} - \frac{60853334766636801221428058939}{49803066592551848058668562392217} a^{17} + \frac{241248778615678412121076903961}{49803066592551848058668562392217} a^{16} - \frac{267413765917171976672810500874}{16601022197517282686222854130739} a^{15} + \frac{796957056716341189977218250314}{49803066592551848058668562392217} a^{14} + \frac{557874541513783695947290120553}{49803066592551848058668562392217} a^{13} + \frac{563201843071845879511631192362}{49803066592551848058668562392217} a^{12} + \frac{179746408165041209487976910081}{5533674065839094228740951376913} a^{11} - \frac{362642333552256884998985125103}{16601022197517282686222854130739} a^{10} + \frac{1385643895795317083498767362374}{49803066592551848058668562392217} a^{9} + \frac{2559431937628513683618768115063}{49803066592551848058668562392217} a^{8} - \frac{4450465778046698682571477362143}{49803066592551848058668562392217} a^{7} + \frac{2707361082817855227171440039864}{49803066592551848058668562392217} a^{6} - \frac{1562464098387432576894698719474}{16601022197517282686222854130739} a^{5} - \frac{5833676444888766342459723951715}{49803066592551848058668562392217} a^{4} + \frac{5521871407408618985365997443832}{49803066592551848058668562392217} a^{3} + \frac{21805120229214727287061771046086}{49803066592551848058668562392217} a^{2} - \frac{22274543871904300159430268491581}{49803066592551848058668562392217} a - \frac{14832497940871236632365769141053}{49803066592551848058668562392217}$
Class group and class number
$C_{2}\times C_{2}\times C_{7964}$, which has order $31856$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-33}) \), \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{5}, \sqrt{-33})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.586732839846912.1, 10.0.1833540124521600000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |