Normalized defining polynomial
\( x^{20} - 10 x^{19} + 63 x^{18} - 282 x^{17} + 1160 x^{16} - 4180 x^{15} + 14148 x^{14} - 41798 x^{13} + 119190 x^{12} - 304054 x^{11} + 755996 x^{10} - 1649418 x^{9} + 3590458 x^{8} - 6710840 x^{7} + 12787473 x^{6} - 19605652 x^{5} + 32733776 x^{4} - 38415016 x^{3} + 55028485 x^{2} - 38299500 x + 51338101 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3361869388230684433628866560000000000=2^{20}\cdot 3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(660=2^{2}\cdot 3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{660}(1,·)$, $\chi_{660}(389,·)$, $\chi_{660}(391,·)$, $\chi_{660}(269,·)$, $\chi_{660}(271,·)$, $\chi_{660}(659,·)$, $\chi_{660}(151,·)$, $\chi_{660}(89,·)$, $\chi_{660}(479,·)$, $\chi_{660}(421,·)$, $\chi_{660}(359,·)$, $\chi_{660}(361,·)$, $\chi_{660}(299,·)$, $\chi_{660}(301,·)$, $\chi_{660}(239,·)$, $\chi_{660}(449,·)$, $\chi_{660}(211,·)$, $\chi_{660}(181,·)$, $\chi_{660}(571,·)$, $\chi_{660}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{34605839688798883943040241} a^{18} - \frac{9}{34605839688798883943040241} a^{17} - \frac{2209264105144059104216443}{34605839688798883943040241} a^{16} - \frac{16931726847646411109308493}{34605839688798883943040241} a^{15} + \frac{9662586070864218463136743}{34605839688798883943040241} a^{14} + \frac{3729159360569919541179146}{34605839688798883943040241} a^{13} - \frac{16487300888405307592118578}{34605839688798883943040241} a^{12} - \frac{10529124304511693123826269}{34605839688798883943040241} a^{11} - \frac{13411070524892239379515955}{34605839688798883943040241} a^{10} + \frac{9233213185738372511382598}{34605839688798883943040241} a^{9} + \frac{2604026821261913987692273}{34605839688798883943040241} a^{8} + \frac{11345759218696179300564748}{34605839688798883943040241} a^{7} + \frac{11963458113833524890251086}{34605839688798883943040241} a^{6} + \frac{3998458283652468698366957}{34605839688798883943040241} a^{5} + \frac{14622088029749767298450235}{34605839688798883943040241} a^{4} - \frac{7325658010027551421763887}{34605839688798883943040241} a^{3} - \frac{3223528667576436714407276}{34605839688798883943040241} a^{2} + \frac{2958924263837333754133123}{34605839688798883943040241} a + \frac{14373171098349861010416340}{34605839688798883943040241}$, $\frac{1}{231656301088536472159579455847499} a^{19} + \frac{3347060}{231656301088536472159579455847499} a^{18} + \frac{22915396533383806221995081566039}{231656301088536472159579455847499} a^{17} - \frac{86347280493266590141088899201945}{231656301088536472159579455847499} a^{16} - \frac{73014325390353605260872245113006}{231656301088536472159579455847499} a^{15} - \frac{61370644945372189940729821468249}{231656301088536472159579455847499} a^{14} + \frac{33913341358833793242695830397242}{231656301088536472159579455847499} a^{13} + \frac{46988109403693917501078900247986}{231656301088536472159579455847499} a^{12} - \frac{45168231053381688949152823801161}{231656301088536472159579455847499} a^{11} + \frac{32868576501050498486607743462977}{231656301088536472159579455847499} a^{10} - \frac{59198743722605173726207502572237}{231656301088536472159579455847499} a^{9} + \frac{60388547289214851813351430038483}{231656301088536472159579455847499} a^{8} - \frac{96496736206990652823586244185994}{231656301088536472159579455847499} a^{7} - \frac{24005895100280650830654481428427}{231656301088536472159579455847499} a^{6} - \frac{74433098279117587775808484235465}{231656301088536472159579455847499} a^{5} - \frac{5498631202369184834081330798930}{231656301088536472159579455847499} a^{4} - \frac{108273196779278720183869454937258}{231656301088536472159579455847499} a^{3} - \frac{14151569481576765787174653435758}{231656301088536472159579455847499} a^{2} - \frac{69682114555336726912435420204394}{231656301088536472159579455847499} a + \frac{76734949574908182907590444229649}{231656301088536472159579455847499}$
Class group and class number
$C_{2}\times C_{7964}$, which has order $15928$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-165}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{11}, \sqrt{-15})\), \(\Q(\zeta_{11})^+\), 10.0.1833540124521600000.1, \(\Q(\zeta_{44})^+\), 10.0.162778775259375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||