Properties

Label 20.0.33422412447...6624.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 3^{19}\cdot 223^{7}$
Root discriminant $37.69$
Ramified primes $2, 3, 223$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T375

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![33268701, 0, 6415041, 0, 7627938, 0, 950139, 0, 186858, 0, 114117, 0, 25977, 0, 459, 0, -177, 0, -15, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 15*x^18 - 177*x^16 + 459*x^14 + 25977*x^12 + 114117*x^10 + 186858*x^8 + 950139*x^6 + 7627938*x^4 + 6415041*x^2 + 33268701)
 
gp: K = bnfinit(x^20 - 15*x^18 - 177*x^16 + 459*x^14 + 25977*x^12 + 114117*x^10 + 186858*x^8 + 950139*x^6 + 7627938*x^4 + 6415041*x^2 + 33268701, 1)
 

Normalized defining polynomial

\( x^{20} - 15 x^{18} - 177 x^{16} + 459 x^{14} + 25977 x^{12} + 114117 x^{10} + 186858 x^{8} + 950139 x^{6} + 7627938 x^{4} + 6415041 x^{2} + 33268701 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(33422412447112238125305245466624=2^{20}\cdot 3^{19}\cdot 223^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.69$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 223$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{223} a^{16} - \frac{15}{223} a^{14} + \frac{46}{223} a^{12} + \frac{13}{223} a^{10} + \frac{109}{223} a^{8} - \frac{59}{223} a^{6} - \frac{16}{223} a^{4} - \frac{64}{223} a^{2}$, $\frac{1}{223} a^{17} - \frac{15}{223} a^{15} + \frac{46}{223} a^{13} + \frac{13}{223} a^{11} + \frac{109}{223} a^{9} - \frac{59}{223} a^{7} - \frac{16}{223} a^{5} - \frac{64}{223} a^{3}$, $\frac{1}{375286938124506919184141958937352267} a^{18} + \frac{10603099065445955925794365141494}{8727603212197835329863766486915169} a^{16} + \frac{108631521849589316409324793853736517}{375286938124506919184141958937352267} a^{14} + \frac{124965160261702124732042919348426216}{375286938124506919184141958937352267} a^{12} - \frac{63011941010438615496845316120761168}{375286938124506919184141958937352267} a^{10} - \frac{90857784244471227483267682232271722}{375286938124506919184141958937352267} a^{8} - \frac{5248755649335470092203391725610094}{375286938124506919184141958937352267} a^{6} - \frac{103555707572950766352272387060305994}{375286938124506919184141958937352267} a^{4} + \frac{736911240649634957226853323497446}{1682901067822900982888528963844629} a^{2} + \frac{3028488113823176385645404677084}{7546641559743950595912685936523}$, $\frac{1}{375286938124506919184141958937352267} a^{19} + \frac{10603099065445955925794365141494}{8727603212197835329863766486915169} a^{17} + \frac{108631521849589316409324793853736517}{375286938124506919184141958937352267} a^{15} + \frac{124965160261702124732042919348426216}{375286938124506919184141958937352267} a^{13} - \frac{63011941010438615496845316120761168}{375286938124506919184141958937352267} a^{11} - \frac{90857784244471227483267682232271722}{375286938124506919184141958937352267} a^{9} - \frac{5248755649335470092203391725610094}{375286938124506919184141958937352267} a^{7} - \frac{103555707572950766352272387060305994}{375286938124506919184141958937352267} a^{5} + \frac{736911240649634957226853323497446}{1682901067822900982888528963844629} a^{3} + \frac{3028488113823176385645404677084}{7546641559743950595912685936523} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{19143889212572}{320994289738053106271} a^{18} + \frac{6566528330185}{7464983482280304797} a^{16} + \frac{3772375773704510}{320994289738053106271} a^{14} - \frac{12478996009643744}{320994289738053106271} a^{12} - \frac{538741172783818028}{320994289738053106271} a^{10} - \frac{2241093829941639627}{320994289738053106271} a^{8} + \frac{1370285116585419429}{320994289738053106271} a^{6} - \frac{1788451788087770709}{320994289738053106271} a^{4} - \frac{106621994205580312515}{320994289738053106271} a^{2} + \frac{141345656965147811950}{320994289738053106271} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 52533635.8157 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T375:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7680
The 48 conjugacy class representatives for t20n375
Character table for t20n375 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 5.3.18063.1, 10.0.978815907.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
223Data not computed