Normalized defining polynomial
\( x^{20} - 15 x^{18} - 177 x^{16} + 459 x^{14} + 25977 x^{12} + 114117 x^{10} + 186858 x^{8} + 950139 x^{6} + 7627938 x^{4} + 6415041 x^{2} + 33268701 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33422412447112238125305245466624=2^{20}\cdot 3^{19}\cdot 223^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{223} a^{16} - \frac{15}{223} a^{14} + \frac{46}{223} a^{12} + \frac{13}{223} a^{10} + \frac{109}{223} a^{8} - \frac{59}{223} a^{6} - \frac{16}{223} a^{4} - \frac{64}{223} a^{2}$, $\frac{1}{223} a^{17} - \frac{15}{223} a^{15} + \frac{46}{223} a^{13} + \frac{13}{223} a^{11} + \frac{109}{223} a^{9} - \frac{59}{223} a^{7} - \frac{16}{223} a^{5} - \frac{64}{223} a^{3}$, $\frac{1}{375286938124506919184141958937352267} a^{18} + \frac{10603099065445955925794365141494}{8727603212197835329863766486915169} a^{16} + \frac{108631521849589316409324793853736517}{375286938124506919184141958937352267} a^{14} + \frac{124965160261702124732042919348426216}{375286938124506919184141958937352267} a^{12} - \frac{63011941010438615496845316120761168}{375286938124506919184141958937352267} a^{10} - \frac{90857784244471227483267682232271722}{375286938124506919184141958937352267} a^{8} - \frac{5248755649335470092203391725610094}{375286938124506919184141958937352267} a^{6} - \frac{103555707572950766352272387060305994}{375286938124506919184141958937352267} a^{4} + \frac{736911240649634957226853323497446}{1682901067822900982888528963844629} a^{2} + \frac{3028488113823176385645404677084}{7546641559743950595912685936523}$, $\frac{1}{375286938124506919184141958937352267} a^{19} + \frac{10603099065445955925794365141494}{8727603212197835329863766486915169} a^{17} + \frac{108631521849589316409324793853736517}{375286938124506919184141958937352267} a^{15} + \frac{124965160261702124732042919348426216}{375286938124506919184141958937352267} a^{13} - \frac{63011941010438615496845316120761168}{375286938124506919184141958937352267} a^{11} - \frac{90857784244471227483267682232271722}{375286938124506919184141958937352267} a^{9} - \frac{5248755649335470092203391725610094}{375286938124506919184141958937352267} a^{7} - \frac{103555707572950766352272387060305994}{375286938124506919184141958937352267} a^{5} + \frac{736911240649634957226853323497446}{1682901067822900982888528963844629} a^{3} + \frac{3028488113823176385645404677084}{7546641559743950595912685936523} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{19143889212572}{320994289738053106271} a^{18} + \frac{6566528330185}{7464983482280304797} a^{16} + \frac{3772375773704510}{320994289738053106271} a^{14} - \frac{12478996009643744}{320994289738053106271} a^{12} - \frac{538741172783818028}{320994289738053106271} a^{10} - \frac{2241093829941639627}{320994289738053106271} a^{8} + \frac{1370285116585419429}{320994289738053106271} a^{6} - \frac{1788451788087770709}{320994289738053106271} a^{4} - \frac{106621994205580312515}{320994289738053106271} a^{2} + \frac{141345656965147811950}{320994289738053106271} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 52533635.8157 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.3.18063.1, 10.0.978815907.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 223 | Data not computed | ||||||