Normalized defining polynomial
\( x^{20} - 4 x^{19} + 15 x^{18} - 49 x^{17} + 175 x^{16} - 486 x^{15} + 1452 x^{14} - 3417 x^{13} + 8985 x^{12} - 18018 x^{11} + 45207 x^{10} - 78273 x^{9} + 180504 x^{8} - 213489 x^{7} + 632475 x^{6} - 266436 x^{5} + 1865295 x^{4} + 184761 x^{3} + 2473983 x^{2} + 309501 x + 656181 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(332890802464111776751903153461=3^{15}\cdot 1567^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1567$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{11} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4}$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{15} - \frac{1}{27} a^{13} + \frac{1}{27} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4}$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{15} - \frac{1}{27} a^{14} + \frac{1}{27} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{15} + \frac{1}{27} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5}$, $\frac{1}{21061959151770517334557206098143884433057955318205} a^{19} - \frac{203357541172588780516935965428732572547932148}{369508055294219602360652738563927797071192198565} a^{18} + \frac{78165599959450717466099718128196825409914075094}{7020653050590172444852402032714628144352651772735} a^{17} - \frac{26084210055455627158673921592047693480944746178}{21061959151770517334557206098143884433057955318205} a^{16} + \frac{423376346502412555465531567688685682548317174336}{21061959151770517334557206098143884433057955318205} a^{15} - \frac{34708942472777808803482802104391237871359188579}{780072561176685827205822448079403127150294641415} a^{14} + \frac{333944332620921591032756933389444970373346689781}{7020653050590172444852402032714628144352651772735} a^{13} - \frac{996360807740690487107775897904479638412833139188}{21061959151770517334557206098143884433057955318205} a^{12} - \frac{884570229329072256642326485218988523250135390473}{7020653050590172444852402032714628144352651772735} a^{11} - \frac{30960482324530704692951673040001281346913445522}{1404130610118034488970480406542925628870530354547} a^{10} - \frac{371887101600694805915789412430403488307389139522}{2340217683530057481617467344238209381450883924245} a^{9} + \frac{625247442333151255203097352529038737153158250436}{7020653050590172444852402032714628144352651772735} a^{8} + \frac{232345663068210993972853725565876720442806982927}{2340217683530057481617467344238209381450883924245} a^{7} - \frac{70857903487947579311235178669515860179774077337}{156014512235337165441164489615880625430058928283} a^{6} - \frac{36887418375130362765983385938140937433922750491}{156014512235337165441164489615880625430058928283} a^{5} - \frac{102220355236462352993573467104101314826967830938}{780072561176685827205822448079403127150294641415} a^{4} - \frac{335101557595853979683788481064867731833260547414}{780072561176685827205822448079403127150294641415} a^{3} - \frac{63355524170713043403300304139052291258910288109}{780072561176685827205822448079403127150294641415} a^{2} - \frac{348288232282506194437298325403595921283190007713}{780072561176685827205822448079403127150294641415} a - \frac{282700831300553172076872280440876434805356360201}{780072561176685827205822448079403127150294641415}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3429109882286431309626812}{20607080989937621100431303643615} a^{19} + \frac{10002436430664925846179113}{20607080989937621100431303643615} a^{18} - \frac{83456511482534514882390211}{20607080989937621100431303643615} a^{17} + \frac{383043254049478450582116484}{20607080989937621100431303643615} a^{16} - \frac{1143485102502070245902065658}{20607080989937621100431303643615} a^{15} + \frac{3617457786876888166414349194}{20607080989937621100431303643615} a^{14} - \frac{965715942158472628077517006}{2289675665548624566714589293735} a^{13} + \frac{7869818418729298681888438658}{6869026996645873700143767881205} a^{12} - \frac{4913195764530665612806061732}{2289675665548624566714589293735} a^{11} + \frac{6712446117889654848052465795}{1373805399329174740028753576241} a^{10} - \frac{11080340231179783394016582739}{2289675665548624566714589293735} a^{9} + \frac{21217614652094159038635619399}{2289675665548624566714589293735} a^{8} + \frac{20471481098319224236994846024}{2289675665548624566714589293735} a^{7} + \frac{870806390554974965646682106}{457935133109724913342917858747} a^{6} + \frac{25287592053952962080212495841}{152645044369908304447639286249} a^{5} - \frac{23300693751479940126464195431}{763225221849541522238196431245} a^{4} + \frac{642090148171851598823968306322}{763225221849541522238196431245} a^{3} + \frac{54913962426964093121635344732}{763225221849541522238196431245} a^{2} + \frac{1335968939303500127699958703494}{763225221849541522238196431245} a + \frac{463632580821208773819803659478}{763225221849541522238196431245} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11798986.2811 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 480 |
| The 19 conjugacy class representatives for $C_4:S_5$ |
| Character table for $C_4:S_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.42309.2, 5.3.14103.1, 10.0.596683827.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 1567 | Data not computed | ||||||