Properties

Label 20.0.33170570354...1216.2
Degree $20$
Signature $[0, 10]$
Discriminant $2^{10}\cdot 11^{16}\cdot 89^{3}$
Root discriminant $18.88$
Ramified primes $2, 11, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T747

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -11, 47, -99, 133, -110, 87, -99, 130, -88, 29, -33, 49, -11, 2, -11, 5, 0, 1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + x^18 + 5*x^16 - 11*x^15 + 2*x^14 - 11*x^13 + 49*x^12 - 33*x^11 + 29*x^10 - 88*x^9 + 130*x^8 - 99*x^7 + 87*x^6 - 110*x^5 + 133*x^4 - 99*x^3 + 47*x^2 - 11*x + 1)
 
gp: K = bnfinit(x^20 + x^18 + 5*x^16 - 11*x^15 + 2*x^14 - 11*x^13 + 49*x^12 - 33*x^11 + 29*x^10 - 88*x^9 + 130*x^8 - 99*x^7 + 87*x^6 - 110*x^5 + 133*x^4 - 99*x^3 + 47*x^2 - 11*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} + x^{18} + 5 x^{16} - 11 x^{15} + 2 x^{14} - 11 x^{13} + 49 x^{12} - 33 x^{11} + 29 x^{10} - 88 x^{9} + 130 x^{8} - 99 x^{7} + 87 x^{6} - 110 x^{5} + 133 x^{4} - 99 x^{3} + 47 x^{2} - 11 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(33170570354885225234441216=2^{10}\cdot 11^{16}\cdot 89^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1555834838371661} a^{19} + \frac{230565154629940}{1555834838371661} a^{18} + \frac{278476849762239}{1555834838371661} a^{17} + \frac{749882376933157}{1555834838371661} a^{16} - \frac{26344377482174}{1555834838371661} a^{15} + \frac{577394529707236}{1555834838371661} a^{14} + \frac{455602384731303}{1555834838371661} a^{13} - \frac{755353232792852}{1555834838371661} a^{12} - \frac{30026284265403}{1555834838371661} a^{11} + \frac{5041218148735}{11876601819631} a^{10} + \frac{107017859722488}{1555834838371661} a^{9} + \frac{14562896062171}{1555834838371661} a^{8} - \frac{152335159200769}{1555834838371661} a^{7} - \frac{443694779035775}{1555834838371661} a^{6} + \frac{139207312579554}{1555834838371661} a^{5} + \frac{59292712537979}{1555834838371661} a^{4} + \frac{638728063649405}{1555834838371661} a^{3} + \frac{646334067586447}{1555834838371661} a^{2} + \frac{33848213025266}{1555834838371661} a - \frac{620507443491579}{1555834838371661}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 25498.2101839 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T747:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n747 are not computed
Character table for t20n747 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.2.19077940409.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ $20$ R $20$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ $20$ $20$ $20$ $20$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{10}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.5$x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$$2$$5$$10$$C_2 \times (C_2^4 : C_5)$$[2, 2, 2, 2]^{10}$
2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
89Data not computed