Normalized defining polynomial
\( x^{20} - x^{19} + 11 x^{18} - 16 x^{17} + 60 x^{16} - 57 x^{15} + 140 x^{14} - 33 x^{13} + 292 x^{12} + 70 x^{11} + 433 x^{10} + 10 x^{9} + 525 x^{8} - 143 x^{7} + 90 x^{6} + 178 x^{5} + 302 x^{4} - 64 x^{3} + 16 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33138892049807358428955078125=5^{15}\cdot 19^{4}\cdot 1699^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{19} a^{17} - \frac{2}{19} a^{16} - \frac{1}{19} a^{15} + \frac{5}{19} a^{14} + \frac{9}{19} a^{13} + \frac{5}{19} a^{12} + \frac{7}{19} a^{11} + \frac{8}{19} a^{10} - \frac{6}{19} a^{9} + \frac{3}{19} a^{8} - \frac{6}{19} a^{7} + \frac{3}{19} a^{6} - \frac{7}{19} a^{5} + \frac{3}{19} a^{4} + \frac{9}{19} a^{3} - \frac{7}{19} a^{2} + \frac{7}{19} a - \frac{7}{19}$, $\frac{1}{19} a^{18} - \frac{5}{19} a^{16} + \frac{3}{19} a^{15} + \frac{4}{19} a^{13} - \frac{2}{19} a^{12} + \frac{3}{19} a^{11} - \frac{9}{19} a^{10} - \frac{9}{19} a^{9} - \frac{9}{19} a^{7} - \frac{1}{19} a^{6} + \frac{8}{19} a^{5} - \frac{4}{19} a^{4} - \frac{8}{19} a^{3} - \frac{7}{19} a^{2} + \frac{7}{19} a + \frac{5}{19}$, $\frac{1}{29304915596449678980488851} a^{19} + \frac{102531819636152367152579}{29304915596449678980488851} a^{18} - \frac{526324050053995386304485}{29304915596449678980488851} a^{17} - \frac{14513141683633034815541128}{29304915596449678980488851} a^{16} + \frac{2309401270547959410085996}{29304915596449678980488851} a^{15} + \frac{9463393095705097648831840}{29304915596449678980488851} a^{14} - \frac{12789804581555054243311915}{29304915596449678980488851} a^{13} + \frac{652322598563248712931780}{29304915596449678980488851} a^{12} - \frac{3377583672033985270108764}{29304915596449678980488851} a^{11} - \frac{3068306591570220676264613}{29304915596449678980488851} a^{10} - \frac{518605252356398821530278}{1542363978760509420025729} a^{9} - \frac{10357356287356923643939748}{29304915596449678980488851} a^{8} + \frac{9193516786927077177047192}{29304915596449678980488851} a^{7} + \frac{5543824684969277057880758}{29304915596449678980488851} a^{6} - \frac{14588690905246231155787092}{29304915596449678980488851} a^{5} + \frac{13080436558478857817408046}{29304915596449678980488851} a^{4} - \frac{789845524303905783594573}{29304915596449678980488851} a^{3} - \frac{8231722222824461595821421}{29304915596449678980488851} a^{2} + \frac{9917602022142655844382780}{29304915596449678980488851} a - \frac{6481788387558187266972681}{29304915596449678980488851}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{443804534804568912492857}{29304915596449678980488851} a^{19} - \frac{1760942791456694095685856}{29304915596449678980488851} a^{18} + \frac{5841957704907681420998578}{29304915596449678980488851} a^{17} - \frac{1116264293210173903701896}{1542363978760509420025729} a^{16} + \frac{43770421141504709440258998}{29304915596449678980488851} a^{15} - \frac{98397320397255039238058967}{29304915596449678980488851} a^{14} + \frac{115651430484503575032639745}{29304915596449678980488851} a^{13} - \frac{177863522979880153594216159}{29304915596449678980488851} a^{12} + \frac{6490591451829598149365098}{1542363978760509420025729} a^{11} - \frac{17958504611600802927763616}{1542363978760509420025729} a^{10} - \frac{591439235330514181361618}{29304915596449678980488851} a^{9} - \frac{589040203648510350604936895}{29304915596449678980488851} a^{8} + \frac{74191274229571598296902484}{29304915596449678980488851} a^{7} - \frac{755555257197447011558265065}{29304915596449678980488851} a^{6} + \frac{48571545934154744545903338}{29304915596449678980488851} a^{5} + \frac{10115712902197362521075687}{29304915596449678980488851} a^{4} - \frac{127391129250472761559858317}{29304915596449678980488851} a^{3} - \frac{525507536744540711476161671}{29304915596449678980488851} a^{2} - \frac{404246028096363746706362}{1542363978760509420025729} a + \frac{159350305143406578514537}{29304915596449678980488851} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 351148.02443 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5^2:C_4$ (as 20T93):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $D_5^2:C_4$ |
| Character table for $D_5^2:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | R | $20$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1699 | Data not computed | ||||||