Normalized defining polynomial
\( x^{20} - 10 x^{19} + 38 x^{18} + x^{17} - 407 x^{16} + 1072 x^{15} + 507 x^{14} - 6638 x^{13} + 12038 x^{12} + 5065 x^{11} - 44264 x^{10} + 75647 x^{9} + 82491 x^{8} - 212999 x^{7} + 129604 x^{6} + 868195 x^{5} + 463258 x^{4} - 352434 x^{3} - 1262 x^{2} + 547813 x + 288749 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32917742720024812473102569580078125=5^{18}\cdot 29^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{65} a^{16} - \frac{6}{65} a^{15} + \frac{8}{65} a^{14} + \frac{8}{65} a^{13} + \frac{7}{65} a^{12} + \frac{11}{65} a^{11} + \frac{1}{5} a^{10} + \frac{11}{65} a^{9} - \frac{23}{65} a^{8} + \frac{21}{65} a^{7} - \frac{32}{65} a^{6} + \frac{7}{65} a^{5} + \frac{21}{65} a^{4} + \frac{29}{65} a^{3} + \frac{1}{13} a^{2} + \frac{17}{65} a + \frac{32}{65}$, $\frac{1}{59995} a^{17} - \frac{4}{11999} a^{16} + \frac{1100}{11999} a^{15} + \frac{62}{4615} a^{14} + \frac{21774}{59995} a^{13} + \frac{22156}{59995} a^{12} + \frac{353}{59995} a^{11} - \frac{13509}{59995} a^{10} - \frac{4831}{59995} a^{9} - \frac{23278}{59995} a^{8} + \frac{7474}{59995} a^{7} + \frac{356}{4615} a^{6} - \frac{4451}{11999} a^{5} + \frac{22758}{59995} a^{4} + \frac{2564}{11999} a^{3} + \frac{3892}{11999} a^{2} - \frac{27298}{59995} a + \frac{16556}{59995}$, $\frac{1}{3899675} a^{18} - \frac{21}{3899675} a^{17} + \frac{1104}{779935} a^{16} + \frac{14691}{155987} a^{15} + \frac{140958}{3899675} a^{14} - \frac{383586}{3899675} a^{13} + \frac{1310086}{3899675} a^{12} + \frac{65680}{155987} a^{11} + \frac{1496554}{3899675} a^{10} - \frac{31878}{299975} a^{9} - \frac{473206}{3899675} a^{8} - \frac{302821}{3899675} a^{7} + \frac{1844961}{3899675} a^{6} + \frac{33014}{3899675} a^{5} + \frac{841991}{3899675} a^{4} + \frac{1110548}{3899675} a^{3} + \frac{1525111}{3899675} a^{2} + \frac{415823}{3899675} a + \frac{1759296}{3899675}$, $\frac{1}{422474563361096707631697530216599915021219025} a^{19} + \frac{835338797574516312270063589644029253}{84494912672219341526339506043319983004243805} a^{18} + \frac{2042336730957140094810601792217418389369}{422474563361096707631697530216599915021219025} a^{17} + \frac{317944664228834232430971132808377504259866}{84494912672219341526339506043319983004243805} a^{16} - \frac{451763850061833153349965058752397495048444}{32498043335468977510130579247430762693939925} a^{15} + \frac{48090932374415185816464895650222666990448762}{422474563361096707631697530216599915021219025} a^{14} - \frac{34726122650889392332810928245512629363579179}{84494912672219341526339506043319983004243805} a^{13} + \frac{158012423403896038696801490712324979851303851}{422474563361096707631697530216599915021219025} a^{12} - \frac{25918731280679476727899060943961146874532256}{422474563361096707631697530216599915021219025} a^{11} + \frac{32352270194480618292890582341991581967337007}{84494912672219341526339506043319983004243805} a^{10} + \frac{24383694843168324621326028381031516208578216}{84494912672219341526339506043319983004243805} a^{9} - \frac{92141028474028766602163054100112619376869767}{422474563361096707631697530216599915021219025} a^{8} - \frac{1380947108966187084494745477052887476777246}{6499608667093795502026115849486152538787985} a^{7} + \frac{17923143799514212937421247176977294011610182}{84494912672219341526339506043319983004243805} a^{6} + \frac{1850420625326213533306120229169475791984779}{6499608667093795502026115849486152538787985} a^{5} + \frac{178996759290140612733014339907105941623193429}{422474563361096707631697530216599915021219025} a^{4} + \frac{118117554186970563200245635647620630704225664}{422474563361096707631697530216599915021219025} a^{3} + \frac{114587039368168602020075715592873775774021774}{422474563361096707631697530216599915021219025} a^{2} + \frac{99998910114494049928374502204850743198497884}{422474563361096707631697530216599915021219025} a - \frac{121169415433053581291378299104698851590484929}{422474563361096707631697530216599915021219025}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 318100225.529 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5:D_5.Q_8$ (as 20T105):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_5:D_5.Q_8$ |
| Character table for $C_5:D_5.Q_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.0.609725.2, 10.2.8012167578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.10.11.8 | $x^{10} + 20 x^{2} + 10$ | $10$ | $1$ | $11$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 29 | Data not computed | ||||||