Normalized defining polynomial
\( x^{20} - 10 x^{19} + 59 x^{18} - 246 x^{17} + 762 x^{16} - 1812 x^{15} + 3354 x^{14} - 4824 x^{13} + 6822 x^{12} - 13372 x^{11} + 38992 x^{10} - 100784 x^{9} + 212681 x^{8} - 349790 x^{7} + 462031 x^{6} - 482390 x^{5} + 399126 x^{4} - 252060 x^{3} + 116828 x^{2} - 35368 x + 5352 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3283695903258231417561212391424=2^{12}\cdot 47^{2}\cdot 881^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 47, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12576806752304} a^{18} - \frac{9}{12576806752304} a^{17} - \frac{5182155169}{12576806752304} a^{16} + \frac{10364310389}{3144201688076} a^{15} - \frac{1024556091255}{12576806752304} a^{14} + \frac{157987534689}{12576806752304} a^{13} - \frac{152789753545}{1572100844038} a^{12} + \frac{877971336501}{12576806752304} a^{11} - \frac{1624619915113}{12576806752304} a^{10} - \frac{536997488587}{3144201688076} a^{9} - \frac{947740294005}{12576806752304} a^{8} - \frac{1769428885105}{12576806752304} a^{7} + \frac{2835452595039}{12576806752304} a^{6} + \frac{1477259860241}{3144201688076} a^{5} - \frac{735371482911}{6288403376152} a^{4} + \frac{356079588482}{786050422019} a^{3} - \frac{438142350895}{3144201688076} a^{2} - \frac{222127116981}{786050422019} a + \frac{448648580561}{1572100844038}$, $\frac{1}{254793527994926736} a^{19} + \frac{1265}{31849190999365842} a^{18} + \frac{7217512383855293}{127396763997463368} a^{17} + \frac{4646560830364337}{254793527994926736} a^{16} - \frac{25621382537015963}{254793527994926736} a^{15} + \frac{13626117571053181}{127396763997463368} a^{14} - \frac{1692945746579051}{254793527994926736} a^{13} + \frac{31247389184976599}{254793527994926736} a^{12} - \frac{424581059484113}{63698381998731684} a^{11} - \frac{23263547663974427}{254793527994926736} a^{10} + \frac{4525547373437503}{28310391999436304} a^{9} + \frac{30120360615185219}{127396763997463368} a^{8} - \frac{28884660959654365}{127396763997463368} a^{7} + \frac{152580643241537}{28310391999436304} a^{6} - \frac{61856796599347249}{127396763997463368} a^{5} - \frac{3105976069352597}{14155195999718152} a^{4} - \frac{10395483808110905}{21232793999577228} a^{3} - \frac{1279079342001149}{7077597999859076} a^{2} - \frac{8028768882085847}{31849190999365842} a + \frac{3389255397208765}{10616396999788614}$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 43984655.3575 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.3104644.1, 10.8.1812097100946368.1, 10.0.453024275236592.1, 10.2.38555257466944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| 2.6.6.7 | $x^{6} + 2 x^{2} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $47$ | 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.6.0.1 | $x^{6} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 47.6.0.1 | $x^{6} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 881 | Data not computed | ||||||