Normalized defining polynomial
\( x^{20} - 4 x^{19} + 42 x^{18} - 108 x^{17} + 585 x^{16} - 1163 x^{15} + 4645 x^{14} - 10617 x^{13} + 31833 x^{12} - 75285 x^{11} + 168816 x^{10} - 330321 x^{9} + 666734 x^{8} - 1317875 x^{7} + 2500617 x^{6} - 4132047 x^{5} + 5546802 x^{4} - 5570593 x^{3} + 3798320 x^{2} - 1539672 x + 282861 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3280906026328914297094848663330078125=5^{15}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $66.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{2}{9} a^{6} - \frac{4}{9} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{4}{9} a^{6} - \frac{2}{9} a^{5} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{2}{9} a^{6} - \frac{2}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{2}$, $\frac{1}{621} a^{17} + \frac{1}{207} a^{16} + \frac{8}{621} a^{15} + \frac{1}{23} a^{14} + \frac{100}{621} a^{13} - \frac{65}{621} a^{12} + \frac{103}{621} a^{11} + \frac{70}{621} a^{10} + \frac{103}{621} a^{9} - \frac{83}{621} a^{8} + \frac{43}{621} a^{7} + \frac{34}{621} a^{6} + \frac{11}{207} a^{5} + \frac{2}{27} a^{4} + \frac{305}{621} a^{3} + \frac{85}{621} a^{2} + \frac{83}{207} a + \frac{14}{69}$, $\frac{1}{169968321} a^{18} - \frac{35659}{56656107} a^{17} - \frac{7163593}{169968321} a^{16} + \frac{1452103}{56656107} a^{15} - \frac{5788499}{169968321} a^{14} - \frac{25547555}{169968321} a^{13} - \frac{22708262}{169968321} a^{12} + \frac{25093246}{169968321} a^{11} + \frac{339622}{169968321} a^{10} - \frac{21016640}{169968321} a^{9} + \frac{11496070}{169968321} a^{8} + \frac{13642942}{169968321} a^{7} + \frac{5233985}{18885369} a^{6} + \frac{18744838}{169968321} a^{5} - \frac{75006145}{169968321} a^{4} - \frac{19572014}{169968321} a^{3} - \frac{26257567}{56656107} a^{2} + \frac{106705}{320091} a + \frac{87352}{6295123}$, $\frac{1}{51106000946960374515929562567648605175177} a^{19} - \frac{84200404212130290377290862804357}{51106000946960374515929562567648605175177} a^{18} + \frac{1272304771364954075157534352783122852}{1892814849887421278367761576579577969451} a^{17} + \frac{2771805107874077692146616296527800021268}{51106000946960374515929562567648605175177} a^{16} - \frac{912891636975917774832980116635116096696}{17035333648986791505309854189216201725059} a^{15} - \frac{871491467867312166280381222037851574986}{51106000946960374515929562567648605175177} a^{14} + \frac{95596221114152067408228619910008237639}{17035333648986791505309854189216201725059} a^{13} + \frac{314219173777372935896491370383597602746}{1892814849887421278367761576579577969451} a^{12} - \frac{1186679143296649520565862151185435095214}{17035333648986791505309854189216201725059} a^{11} - \frac{108283061989917992448273333489900857014}{1310410280691291654254604168401246286543} a^{10} - \frac{794934066507936559441744530289209695108}{5678444549662263835103284729738733908353} a^{9} + \frac{2726769105805808935657324714933792119130}{17035333648986791505309854189216201725059} a^{8} - \frac{654301710385563830959206533327763477712}{3931230842073874962763812505203738859629} a^{7} + \frac{26598046841429748327477923370445971418}{74174166831582546467241745381202619993} a^{6} + \frac{1264405589483293676017359851566082657}{246888893463576688482751509988640604711} a^{5} - \frac{295286753822174074076769092910377626951}{2222000041172190196344763589897765442399} a^{4} - \frac{7163619266124056742871032818932340370502}{17035333648986791505309854189216201725059} a^{3} - \frac{12546639806499944656162198934176918667264}{51106000946960374515929562567648605175177} a^{2} + \frac{4673397936510930711841304122725194418347}{17035333648986791505309854189216201725059} a - \frac{42644245411103008825830961481873211398}{107140463201174789341571409995070451101}$
Class group and class number
$C_{2}\times C_{808}$, which has order $1616$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31495162.1453 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $D_{20}$ |
| Character table for $D_{20}$ |
Intermediate fields
| \(\Q(\sqrt{2005}) \), 4.0.20100125.1, 5.5.160801.1, 10.10.32402005006253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 401 | Data not computed | ||||||