Normalized defining polynomial
\( x^{20} + 12 x^{18} - 7 x^{17} + 41 x^{16} - 58 x^{15} + 102 x^{14} + 272 x^{13} + 568 x^{12} + 538 x^{11} + 664 x^{10} + 362 x^{9} + 3461 x^{8} + 14 x^{7} + 8626 x^{6} + 3161 x^{5} + 5774 x^{4} + 3726 x^{3} + 1980 x^{2} + 351 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32758971529018084480000000000=2^{16}\cdot 5^{10}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{1}{3} a^{6} + \frac{4}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{3} a^{7} + \frac{4}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{117} a^{16} + \frac{2}{117} a^{15} - \frac{5}{117} a^{14} + \frac{1}{9} a^{13} - \frac{2}{13} a^{12} - \frac{4}{117} a^{11} - \frac{1}{39} a^{10} + \frac{1}{39} a^{9} + \frac{17}{117} a^{8} + \frac{43}{117} a^{7} + \frac{38}{117} a^{6} + \frac{17}{117} a^{5} + \frac{8}{39} a^{4} - \frac{2}{9} a^{3} + \frac{7}{39} a^{2} - \frac{5}{13} a + \frac{1}{13}$, $\frac{1}{1053} a^{17} - \frac{1}{351} a^{16} + \frac{50}{1053} a^{15} - \frac{40}{1053} a^{14} - \frac{5}{39} a^{13} + \frac{11}{117} a^{12} + \frac{23}{351} a^{11} - \frac{34}{1053} a^{10} + \frac{106}{1053} a^{9} - \frac{55}{1053} a^{8} + \frac{2}{117} a^{7} + \frac{29}{351} a^{6} - \frac{451}{1053} a^{5} - \frac{484}{1053} a^{4} - \frac{265}{1053} a^{3} + \frac{145}{351} a^{2} + \frac{1}{3} a + \frac{7}{39}$, $\frac{1}{752895} a^{18} + \frac{113}{250965} a^{17} + \frac{1004}{752895} a^{16} + \frac{4523}{752895} a^{15} - \frac{29}{27885} a^{14} + \frac{4109}{27885} a^{13} - \frac{20188}{250965} a^{12} - \frac{59236}{752895} a^{11} - \frac{7798}{150579} a^{10} - \frac{84808}{752895} a^{9} - \frac{3709}{27885} a^{8} + \frac{3239}{250965} a^{7} + \frac{302156}{752895} a^{6} - \frac{17591}{150579} a^{5} - \frac{325363}{752895} a^{4} + \frac{111973}{250965} a^{3} + \frac{15248}{83655} a^{2} + \frac{2473}{9295} a - \frac{4416}{9295}$, $\frac{1}{322558356819009641660806905} a^{19} + \frac{34706628957180382063}{107519452273003213886935635} a^{18} - \frac{13448376908908041597754}{35839817424334404628978545} a^{17} - \frac{82960165333193469124547}{29323486983546331060073355} a^{16} + \frac{232004166127647499950467}{322558356819009641660806905} a^{15} - \frac{6868422134140035548143447}{322558356819009641660806905} a^{14} - \frac{11294557544795789664344533}{107519452273003213886935635} a^{13} + \frac{3508784857172994362626844}{322558356819009641660806905} a^{12} - \frac{307882943655282398643517}{4962436258753994487089337} a^{11} + \frac{13951764084244462649948902}{322558356819009641660806905} a^{10} + \frac{3169165771776026551436662}{322558356819009641660806905} a^{9} - \frac{20716670476978857647634328}{322558356819009641660806905} a^{8} + \frac{116918760264818426123885531}{322558356819009641660806905} a^{7} - \frac{12075783469745754271554905}{64511671363801928332161381} a^{6} + \frac{42793831568265371491385002}{322558356819009641660806905} a^{5} + \frac{24664595709917985227144879}{322558356819009641660806905} a^{4} - \frac{8636180981461191148684948}{322558356819009641660806905} a^{3} - \frac{4149915107470032909951869}{107519452273003213886935635} a^{2} + \frac{168726883913641944518954}{362018357821559642716955} a - \frac{721592734085381818054327}{2389321161622293641931903}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1421636.55011 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.54925.1, 5.1.878800.1 x5, 10.2.10039762720000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.878800.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |