Normalized defining polynomial
\( x^{20} - x^{19} - 57 x^{18} + 135 x^{17} + 1263 x^{16} - 4296 x^{15} - 11039 x^{14} + 63644 x^{13} + 6036 x^{12} - 475614 x^{11} + 882024 x^{10} + 62094 x^{9} - 2500979 x^{8} + 5280269 x^{7} - 5545938 x^{6} - 7998318 x^{5} + 32100489 x^{4} - 22614228 x^{3} + 12269070 x^{2} - 5019165 x + 4782969 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3263562935079536383073550022036789161199237=13^{15}\cdot 41^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(533=13\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{533}(1,·)$, $\chi_{533}(324,·)$, $\chi_{533}(385,·)$, $\chi_{533}(467,·)$, $\chi_{533}(493,·)$, $\chi_{533}(18,·)$, $\chi_{533}(83,·)$, $\chi_{533}(469,·)$, $\chi_{533}(346,·)$, $\chi_{533}(411,·)$, $\chi_{533}(92,·)$, $\chi_{533}(428,·)$, $\chi_{533}(365,·)$, $\chi_{533}(174,·)$, $\chi_{533}(242,·)$, $\chi_{533}(51,·)$, $\chi_{533}(502,·)$, $\chi_{533}(57,·)$, $\chi_{533}(508,·)$, $\chi_{533}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{81} a^{9} - \frac{1}{27} a^{7} + \frac{1}{27} a^{5} - \frac{10}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{81} a^{10} - \frac{1}{27} a^{8} + \frac{1}{27} a^{6} - \frac{10}{81} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{81} a^{11} + \frac{1}{27} a^{7} + \frac{8}{81} a^{5} - \frac{4}{27} a^{3}$, $\frac{1}{243} a^{12} - \frac{1}{243} a^{10} - \frac{1}{81} a^{8} - \frac{4}{243} a^{6} - \frac{11}{243} a^{4} + \frac{2}{27} a^{2}$, $\frac{1}{243} a^{13} - \frac{1}{243} a^{11} - \frac{13}{243} a^{7} - \frac{2}{243} a^{5} - \frac{4}{81} a^{3} + \frac{1}{9} a$, $\frac{1}{729} a^{14} + \frac{1}{729} a^{12} + \frac{1}{243} a^{11} + \frac{4}{729} a^{10} - \frac{1}{243} a^{9} - \frac{37}{729} a^{8} - \frac{1}{81} a^{7} + \frac{8}{729} a^{6} - \frac{4}{243} a^{5} - \frac{94}{729} a^{4} - \frac{11}{243} a^{3} + \frac{13}{81} a^{2} + \frac{2}{27} a$, $\frac{1}{2187} a^{15} + \frac{4}{2187} a^{13} + \frac{1}{729} a^{12} + \frac{1}{2187} a^{11} - \frac{4}{729} a^{10} + \frac{8}{2187} a^{9} + \frac{2}{243} a^{8} - \frac{4}{2187} a^{7} - \frac{13}{729} a^{6} - \frac{289}{2187} a^{5} - \frac{62}{729} a^{4} - \frac{23}{243} a^{3} + \frac{8}{81} a^{2} + \frac{2}{9} a$, $\frac{1}{2187} a^{16} + \frac{1}{2187} a^{14} + \frac{1}{729} a^{13} - \frac{2}{2187} a^{12} + \frac{2}{729} a^{11} - \frac{4}{2187} a^{10} + \frac{107}{2187} a^{8} - \frac{31}{729} a^{7} - \frac{70}{2187} a^{6} - \frac{86}{729} a^{5} + \frac{106}{729} a^{4} + \frac{2}{243} a^{3} - \frac{13}{81} a^{2} + \frac{4}{27} a$, $\frac{1}{6561} a^{17} + \frac{1}{2187} a^{14} + \frac{4}{2187} a^{13} + \frac{1}{2187} a^{12} - \frac{23}{6561} a^{11} + \frac{13}{2187} a^{10} - \frac{4}{729} a^{9} + \frac{98}{2187} a^{8} + \frac{35}{2187} a^{7} - \frac{46}{2187} a^{6} + \frac{895}{6561} a^{5} - \frac{265}{2187} a^{4} + \frac{110}{729} a^{3} + \frac{22}{243} a^{2} - \frac{8}{27} a$, $\frac{1}{59049} a^{18} + \frac{1}{19683} a^{17} - \frac{11}{19683} a^{14} + \frac{4}{2187} a^{13} - \frac{104}{59049} a^{12} - \frac{119}{19683} a^{11} + \frac{28}{6561} a^{10} - \frac{49}{19683} a^{8} - \frac{95}{2187} a^{7} - \frac{2399}{59049} a^{6} - \frac{1160}{19683} a^{5} - \frac{56}{729} a^{4} - \frac{172}{2187} a^{3} - \frac{157}{729} a^{2} - \frac{4}{27} a$, $\frac{1}{553741165762884521219804496917354293948790139} a^{19} - \frac{183455183998146558508236814499208043912}{553741165762884521219804496917354293948790139} a^{18} - \frac{7500943391429346798558023560671457875859}{184580388587628173739934832305784764649596713} a^{17} - \frac{3636752227538803089235677670603290512402}{20508932065292019304437203589531640516621857} a^{16} - \frac{40893794128975946432803965520701763792997}{184580388587628173739934832305784764649596713} a^{15} - \frac{55579250850355766706072594812712827156908}{184580388587628173739934832305784764649596713} a^{14} + \frac{407702953617032204201484808896183629996236}{553741165762884521219804496917354293948790139} a^{13} + \frac{1052127312018352348217419603890645623583791}{553741165762884521219804496917354293948790139} a^{12} - \frac{415651838332447328391689152362969599098888}{184580388587628173739934832305784764649596713} a^{11} - \frac{224216847485833365959957814895715974729270}{61526796195876057913311610768594921549865571} a^{10} + \frac{692454450689322805613815946366801220934286}{184580388587628173739934832305784764649596713} a^{9} - \frac{754731271717849371690285775090175901124649}{184580388587628173739934832305784764649596713} a^{8} + \frac{6540945770996649005402314023354601168178857}{553741165762884521219804496917354293948790139} a^{7} + \frac{21816530289337077774342350238760075276959092}{553741165762884521219804496917354293948790139} a^{6} + \frac{379050149424239583432871563756903863345363}{184580388587628173739934832305784764649596713} a^{5} + \frac{2151612946122467699342667548287175475949153}{20508932065292019304437203589531640516621857} a^{4} - \frac{431345010075409778793771516576295372923026}{20508932065292019304437203589531640516621857} a^{3} + \frac{660537057859294665040765007919972800676220}{6836310688430673101479067863177213505540619} a^{2} - \frac{5196876756192068665059015546696045665287}{84398897388033001252827998310829796364699} a + \frac{143049521713355575851805055433836903280}{9377655265337000139203110923425532929411}$
Class group and class number
$C_{1421461}$, which has order $1421461$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12581669852.706907 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 5.5.2825761.1, 10.10.2964746843096023453.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{20}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | $20$ | $20$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 41 | Data not computed | ||||||