Normalized defining polynomial
\( x^{20} - 9 x^{19} + 51 x^{18} - 231 x^{17} + 833 x^{16} - 2458 x^{15} + 5989 x^{14} - 11695 x^{13} + 20202 x^{12} - 33492 x^{11} + 57953 x^{10} - 92370 x^{9} + 130181 x^{8} - 163476 x^{7} + 201934 x^{6} - 235037 x^{5} + 238937 x^{4} - 173528 x^{3} + 91296 x^{2} - 30696 x + 10256 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3256311210466946358286064453125=5^{10}\cdot 37^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{3}{10} a^{10} + \frac{2}{5} a^{9} - \frac{1}{10} a^{8} + \frac{1}{10} a^{7} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{3}{10} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{70} a^{13} + \frac{1}{70} a^{12} - \frac{2}{35} a^{11} + \frac{5}{14} a^{10} - \frac{9}{35} a^{9} - \frac{3}{10} a^{8} - \frac{13}{70} a^{7} + \frac{23}{70} a^{6} - \frac{11}{70} a^{5} + \frac{1}{7} a^{4} - \frac{3}{7} a^{3} + \frac{3}{10} a - \frac{11}{35}$, $\frac{1}{70} a^{14} + \frac{1}{35} a^{12} - \frac{13}{70} a^{11} + \frac{13}{70} a^{10} - \frac{1}{7} a^{9} + \frac{1}{70} a^{8} + \frac{4}{35} a^{7} + \frac{1}{70} a^{6} + \frac{1}{10} a^{5} - \frac{19}{70} a^{4} + \frac{23}{70} a^{3} + \frac{17}{35} a - \frac{2}{7}$, $\frac{1}{770} a^{15} + \frac{1}{154} a^{14} - \frac{1}{154} a^{13} + \frac{1}{70} a^{12} + \frac{19}{154} a^{11} - \frac{267}{770} a^{10} - \frac{47}{110} a^{9} + \frac{19}{70} a^{8} - \frac{337}{770} a^{7} + \frac{131}{770} a^{6} - \frac{19}{770} a^{5} - \frac{289}{770} a^{4} - \frac{81}{770} a^{3} - \frac{9}{70} a^{2} + \frac{129}{770} a - \frac{1}{385}$, $\frac{1}{3850} a^{16} + \frac{1}{1925} a^{15} + \frac{1}{1925} a^{14} + \frac{3}{770} a^{13} + \frac{86}{1925} a^{12} - \frac{101}{3850} a^{11} - \frac{4}{275} a^{10} - \frac{414}{1925} a^{9} + \frac{376}{1925} a^{8} - \frac{1}{1925} a^{7} + \frac{127}{3850} a^{6} - \frac{1651}{3850} a^{5} - \frac{1051}{3850} a^{4} - \frac{73}{275} a^{3} + \frac{193}{770} a^{2} - \frac{19}{77} a - \frac{712}{1925}$, $\frac{1}{3850} a^{17} - \frac{1}{1925} a^{15} + \frac{1}{350} a^{14} - \frac{23}{3850} a^{13} + \frac{16}{385} a^{12} + \frac{18}{1925} a^{11} + \frac{1319}{3850} a^{10} + \frac{379}{1925} a^{9} + \frac{1189}{3850} a^{8} - \frac{402}{1925} a^{7} - \frac{37}{77} a^{6} - \frac{662}{1925} a^{5} + \frac{174}{385} a^{4} - \frac{73}{550} a^{3} - \frac{134}{385} a^{2} + \frac{233}{550} a + \frac{929}{1925}$, $\frac{1}{2964500} a^{18} + \frac{59}{2964500} a^{17} - \frac{173}{2964500} a^{16} - \frac{17}{423500} a^{15} + \frac{21019}{2964500} a^{14} + \frac{619}{134750} a^{13} + \frac{6997}{423500} a^{12} + \frac{707279}{2964500} a^{11} - \frac{47196}{148225} a^{10} + \frac{61561}{211750} a^{9} + \frac{151369}{592900} a^{8} + \frac{135523}{1482250} a^{7} - \frac{950811}{2964500} a^{6} + \frac{50817}{296450} a^{5} + \frac{83539}{296450} a^{4} - \frac{1151537}{2964500} a^{3} + \frac{145333}{423500} a^{2} - \frac{15069}{1482250} a - \frac{22076}{741125}$, $\frac{1}{2540334476240342826311834413000} a^{19} + \frac{32696781245062735661039}{2540334476240342826311834413000} a^{18} - \frac{49560332929389784091735553}{2540334476240342826311834413000} a^{17} - \frac{278920343494213561959294719}{2540334476240342826311834413000} a^{16} + \frac{965930976110922655080890529}{2540334476240342826311834413000} a^{15} + \frac{3732044137780862821632098759}{1270167238120171413155917206500} a^{14} - \frac{16159095308360644123791803731}{2540334476240342826311834413000} a^{13} - \frac{79159613822593038126291258871}{2540334476240342826311834413000} a^{12} + \frac{3515427509167215410362758391}{23093949784003116602834858300} a^{11} - \frac{19966939654538471148188916459}{635083619060085706577958603250} a^{10} - \frac{234287247928641142680415582331}{508066895248068565262366882600} a^{9} - \frac{599703180900347969849619905737}{1270167238120171413155917206500} a^{8} + \frac{236693814829545444596802600189}{2540334476240342826311834413000} a^{7} - \frac{21406962143840049103023452809}{127016723812017141315591720650} a^{6} + \frac{2892622924707762253035509839}{50806689524806856526236688260} a^{5} - \frac{649514523217914926418085506077}{2540334476240342826311834413000} a^{4} - \frac{140587856022110628648022539959}{2540334476240342826311834413000} a^{3} - \frac{308640344587683101392396180077}{635083619060085706577958603250} a^{2} + \frac{189417910575097446574601942}{1171740994575803886675200375} a + \frac{14524815021027644456788968733}{63508361906008570657795860325}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5638854.77787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.1266325.1, 5.1.1266325.1 x5, 10.2.59332423208125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1266325.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $37$ | 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.1 | $x^{4} - 37$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |