Normalized defining polynomial
\( x^{20} - 7 x^{19} + 19 x^{18} - 26 x^{17} + 38 x^{16} - 119 x^{15} + 279 x^{14} - 503 x^{13} + 1101 x^{12} - 2131 x^{11} + 2762 x^{10} - 3047 x^{9} + 4289 x^{8} - 4711 x^{7} + 3842 x^{6} - 4727 x^{5} + 4805 x^{4} - 3077 x^{3} + 2687 x^{2} - 2421 x + 989 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32473988377432635504517950464=2^{10}\cdot 11^{17}\cdot 89^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} + \frac{8}{43} a^{17} - \frac{13}{43} a^{16} - \frac{18}{43} a^{15} - \frac{19}{43} a^{14} + \frac{10}{43} a^{13} + \frac{6}{43} a^{12} + \frac{2}{43} a^{11} + \frac{4}{43} a^{10} - \frac{10}{43} a^{9} - \frac{17}{43} a^{8} - \frac{19}{43} a^{7} + \frac{9}{43} a^{6} - \frac{11}{43} a^{5} - \frac{13}{43} a^{4} + \frac{18}{43} a^{3} - \frac{1}{43} a^{2} + \frac{20}{43} a$, $\frac{1}{558905550048169277634846281864417} a^{19} + \frac{3002354909266583721541919655098}{558905550048169277634846281864417} a^{18} + \frac{50049199277614309551627884415085}{558905550048169277634846281864417} a^{17} - \frac{50117802240019310878942495466555}{558905550048169277634846281864417} a^{16} + \frac{239910015722359398259765699270264}{558905550048169277634846281864417} a^{15} - \frac{125742508490126882283043729849382}{558905550048169277634846281864417} a^{14} + \frac{59496479046323325740824591511930}{558905550048169277634846281864417} a^{13} + \frac{94511063597186328325361852188626}{558905550048169277634846281864417} a^{12} + \frac{220653776249299895610656417738432}{558905550048169277634846281864417} a^{11} + \frac{259714965909561401062644725089860}{558905550048169277634846281864417} a^{10} + \frac{254144727200497349530487263258101}{558905550048169277634846281864417} a^{9} - \frac{250288595548454188867142320335079}{558905550048169277634846281864417} a^{8} - \frac{37532153876779949098158835236737}{558905550048169277634846281864417} a^{7} - \frac{236113160524032998642679131709665}{558905550048169277634846281864417} a^{6} - \frac{163733396456208234518905132773698}{558905550048169277634846281864417} a^{5} + \frac{217215319698065787746641478187087}{558905550048169277634846281864417} a^{4} - \frac{140708911639325833145030223689395}{558905550048169277634846281864417} a^{3} + \frac{1360869565301371018257312355555}{558905550048169277634846281864417} a^{2} - \frac{129686864320035356654342727336795}{558905550048169277634846281864417} a - \frac{3938203756913417662766166557022}{12997803489492308782205727485219}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 472233.92586 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n427 are not computed |
| Character table for t20n427 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.19077940409.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 89 | Data not computed | ||||||