Normalized defining polynomial
\( x^{20} - 3 x^{15} + 9 x^{14} - 6 x^{12} + 6 x^{10} - 9 x^{8} + 9 x^{7} - 9 x^{5} + 18 x^{4} - 27 x^{3} + 36 x^{2} - 27 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32289424279912035447849=3^{18}\cdot 11^{6}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{3} a^{12}$, $\frac{1}{3} a^{13}$, $\frac{1}{3} a^{14}$, $\frac{1}{3} a^{15}$, $\frac{1}{3} a^{16}$, $\frac{1}{33} a^{17} + \frac{2}{33} a^{16} + \frac{2}{33} a^{15} - \frac{5}{33} a^{14} - \frac{2}{33} a^{13} + \frac{4}{33} a^{12} + \frac{2}{33} a^{11} - \frac{5}{33} a^{10} + \frac{5}{11} a^{9} - \frac{1}{11} a^{8} + \frac{2}{11} a^{7} + \frac{3}{11} a^{6} + \frac{4}{11} a^{5} - \frac{5}{11} a^{4} - \frac{2}{11} a^{2} + \frac{5}{11} a + \frac{5}{11}$, $\frac{1}{4059} a^{18} - \frac{2}{451} a^{17} - \frac{58}{451} a^{16} + \frac{172}{1353} a^{15} - \frac{16}{451} a^{14} - \frac{5}{41} a^{13} - \frac{125}{1353} a^{12} + \frac{62}{1353} a^{11} - \frac{1}{11} a^{10} + \frac{146}{451} a^{9} + \frac{14}{123} a^{8} - \frac{5}{451} a^{7} - \frac{125}{451} a^{6} - \frac{120}{451} a^{5} - \frac{84}{451} a^{4} + \frac{80}{451} a^{3} + \frac{213}{451} a^{2} + \frac{192}{451} a + \frac{194}{451}$, $\frac{1}{3705867} a^{19} - \frac{433}{3705867} a^{18} - \frac{7196}{1235289} a^{17} + \frac{140401}{1235289} a^{16} + \frac{66947}{1235289} a^{15} - \frac{115340}{1235289} a^{14} + \frac{10253}{1235289} a^{13} - \frac{187708}{1235289} a^{12} - \frac{95389}{1235289} a^{11} + \frac{38727}{411763} a^{10} + \frac{265612}{1235289} a^{9} + \frac{493634}{1235289} a^{8} + \frac{72675}{411763} a^{7} - \frac{177025}{411763} a^{6} - \frac{79434}{411763} a^{5} + \frac{13896}{37433} a^{4} + \frac{113588}{411763} a^{3} - \frac{2517}{37433} a^{2} - \frac{202814}{411763} a + \frac{173198}{411763}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{7514}{30129} a^{19} - \frac{1645}{10043} a^{18} - \frac{768}{10043} a^{17} + \frac{212}{10043} a^{16} + \frac{3077}{30129} a^{15} + \frac{8640}{10043} a^{14} - \frac{16710}{10043} a^{13} - \frac{11964}{10043} a^{12} + \frac{7774}{10043} a^{11} + \frac{9219}{10043} a^{10} - \frac{3350}{10043} a^{9} - \frac{2946}{10043} a^{8} + \frac{19047}{10043} a^{7} - \frac{9069}{10043} a^{6} - \frac{6327}{10043} a^{5} + \frac{1605}{913} a^{4} - \frac{28716}{10043} a^{3} + \frac{4311}{913} a^{2} - \frac{59049}{10043} a + \frac{32584}{10043} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2749.61967806 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_5$ (as 20T62):
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $C_2\times S_5$ |
| Character table for $C_2\times S_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.2.59897527569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |