Normalized defining polynomial
\( x^{20} - 8 x^{19} + 22 x^{18} - 16 x^{17} + 15 x^{16} - 222 x^{15} + 390 x^{14} + 1598 x^{13} - 6037 x^{12} + 1344 x^{11} + 20357 x^{10} - 23534 x^{9} + 9710 x^{8} - 42100 x^{7} + 33296 x^{6} + 22698 x^{5} + 17985 x^{4} + 33158 x^{3} + 16835 x^{2} - 150018 x + 145247 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3222585556571212807579035957723136=2^{30}\cdot 67^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 67, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{2}{9} a^{12} + \frac{4}{9} a^{11} + \frac{4}{9} a^{9} + \frac{4}{9} a^{8} + \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{4}{9} a^{2} + \frac{4}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{15} + \frac{1}{9} a^{13} + \frac{4}{9} a^{12} + \frac{1}{9} a^{10} - \frac{2}{9} a^{9} - \frac{2}{9} a^{7} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{755217} a^{18} - \frac{959}{27971} a^{17} + \frac{30218}{755217} a^{16} + \frac{28741}{251739} a^{15} - \frac{110740}{755217} a^{14} + \frac{52639}{755217} a^{13} + \frac{175759}{755217} a^{12} - \frac{368638}{755217} a^{11} - \frac{171620}{755217} a^{10} + \frac{35776}{755217} a^{9} + \frac{304817}{755217} a^{8} + \frac{27428}{83913} a^{7} + \frac{96787}{755217} a^{6} - \frac{150806}{755217} a^{5} - \frac{100471}{755217} a^{4} + \frac{78608}{755217} a^{3} - \frac{101846}{251739} a^{2} - \frac{255941}{755217} a - \frac{518}{2241}$, $\frac{1}{1521111298836538707538234019407502832755547971337} a^{19} + \frac{68715351735626004259111932735165485827958}{169012366537393189726470446600833648083949774593} a^{18} + \frac{66883146816375040861072249104925567416442112327}{1521111298836538707538234019407502832755547971337} a^{17} + \frac{17852105251208502467989113400794231237876819359}{507037099612179569179411339802500944251849323779} a^{16} + \frac{16347869392750626578831787923305262979069336257}{1521111298836538707538234019407502832755547971337} a^{15} + \frac{130750975372736788487057985971601174444203543110}{1521111298836538707538234019407502832755547971337} a^{14} - \frac{234285789977244539661377428924852243719348660518}{1521111298836538707538234019407502832755547971337} a^{13} - \frac{296259514862122454297141451696999136744577942554}{1521111298836538707538234019407502832755547971337} a^{12} + \frac{357072604555891549459334998601551726946735288887}{1521111298836538707538234019407502832755547971337} a^{11} - \frac{98051303228838972900035307984766720668702265652}{1521111298836538707538234019407502832755547971337} a^{10} + \frac{358562340612213340571282211356874915992087789171}{1521111298836538707538234019407502832755547971337} a^{9} - \frac{71936020071626694919371612359084185647524549300}{507037099612179569179411339802500944251849323779} a^{8} + \frac{347841033046953241175650110055753674954779722261}{1521111298836538707538234019407502832755547971337} a^{7} + \frac{47670091353261558244084950115574391752386425886}{1521111298836538707538234019407502832755547971337} a^{6} + \frac{658744270961504840763564051742797396415149491651}{1521111298836538707538234019407502832755547971337} a^{5} - \frac{50695202774711433207863383940464704143326067977}{1521111298836538707538234019407502832755547971337} a^{4} - \frac{25646841360016375569159779586142499820984961475}{56337455512464396575490148866944549361316591531} a^{3} - \frac{611497650309477751508683928293531627069338073112}{1521111298836538707538234019407502832755547971337} a^{2} + \frac{497887950912879707334030466271068246304106167707}{1521111298836538707538234019407502832755547971337} a + \frac{184421911737409188764695813220925047059301953}{1504561126445636703796472818405047312320027667}$
Class group and class number
$C_{39}$, which has order $39$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9087089.31038 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n141 |
| Character table for t20n141 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.5.160801.1, 10.10.847280917741568.1, 10.0.1732416427267.1, 10.0.56767821488685056.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $67$ | 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||